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1 Introduction
Experiments conducted in the 19th century
showed that light passing through narrow slits
will spread out behind the slit and form pat-
terns when projected on to a screen. By having
a sensor analyze the patterns of lasers and plot-
ting light intensity against distance, interference
and diffraction can be compared [1]. Analyzing
diffraction and interference patterns of light is
of importance in the realm of physics and more
specifically in the conversation surrounding the
wave-particle duality of light, since they seek to
prove the wave nature of light [2]. When light
passes through a slit, it diffracts and the angle
to the minima is given by the following equation:

a sin θ = m′λ (m′ = 1, 2, 3, ...) (1)

where a is the slit width, θ is the angle from the
center of the pattern to the "m′th" minimum, λ
is the wavelength of the light, and m′ is the or-
der of diffraction.
When interference of light results from its pas-
sage through two slits, the angle from the cen-
tral maximum to side maximum is given by the
following equation:

d sin θ = mλ (m = 0, 1, 2, 3, ...) (2)

where d is the slit separation, θ is the angle the
center of the pattern to the "mth" maximum, λ
is the wavelength of the light, and m is the order
of interference.
By using concepts from the superposition of
waves, the intensity of light I(ϕ) can be ex-
pressed as follows:

I(ϕ) = I(0)(
sin(ϕ)

ϕ
)2 (3)

where ϕ = πa
λ
sin(θ) and the variables are de-

fined as in Equation 1.
Although only one portion of this lab includes
calculations related to the Heisenberg Uncer-
tainty Principle, there is value in briefly ex-
plaining the concept behind the principle before

listing the relevant equations. Essentially, the
Heisenberg Uncertainty Principle posits that for
a (moving) particle, the more precise measure-
ments become with respect to position, the less
precise measurements become with respect to
momentum (and vice versa) [3]. This general re-
lationship is expressed by the following inequal-
ity:

∆y ·∆p ≥ h

4π
(4)

where h = 6.6262·10−34J ·s is Planck’s constant,
∆y is the uncertainty in the particle’s position,
and ∆p is the uncertainty in the particle’s mo-
mentum.
We can express the particle’s uncertainty of ve-
locity and momentum with the following the
equations respectively:

∆vy = c sin θ1 (5)

∆py =
h

λ
sin(θ1) =

h

a
(6)

where c is the speed of light, a is the slit dis-
tance, θ1 is the angle of the first diffraction min-
imum, λ is the wavelength of the particle, and h
is Planck’s constant.
The uncertainty relation is given by the follow-
ing equation:

∆py ·∆y = h ≥ h

4π
(7)

Experimentally, the angle θ1 can be calculated
using the equation:

tan(θ1) =
l

b
(8)

where l is the half width of the central maximum
of the sensor and b is the distance from the cen-
ter of the sensor to the center of the slit.
By substituting equation 8 into equation 7, the
following equation results:

a

λ
sin(tan−1(

l

b
) = 1 (9)
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Figure 1: Experimental setup. The relevant
equipment included in the photo are the mo-
tor, lens holder, laser beam source, and light
sensor

2 Materials and Experimen-
tal Setup

• Single slit disk

• Multiple slit disk. The double slit setting
was used.

• Scanner with Light sensor

• Red laser beam source (λ = 650 nm)

• Lens holder

• Motor

• Interference and Diffraction software

3 Procedure

3.1 Diffraction of Light Through a
Single Slit

The lens holder was mounted with the single slit
disk, using the 0.04mm slit. The laser, disk, sen-
sor setup was arranged so that the laser pattern
was displayed horizontally on the sensor. The
laser pattern was then moved to one side of the
sensor. The data acquisition button on the In-
terference and Diffraction software was clicked
to turn it on. Then, the motor was turned on
to move the laser pattern to the other side of

Figure 2: Double slit disk.

the sensor. After reaching the other side of the
sensor, the motor was turned off and the data
acquisition button was clicked to turn it off.

3.2 Interference of Light Through
Two Slits

The single slit disk was taken off of the lens
holder and the multiple slit disk was mounted
onto the lens holder. The disk was rotated so
as to use a slit separation of 0.25mm and a slit
width of 0.04mm. The light aperture bracket on
the sensor was set to slit #4. The methodology
for data collection in this section is identical to
the one outlined in section 3.1.

3.3 Quantum Mechanical Inter-
pretation

Following the same setup and methodology as
outlined in section 3.1, the half width of the
central maximum for three different single slit
widths was measured.
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3.4 Diffraction Pattern Analysis

The lens holder was mounted with a single slit
disk and the disk was adjusted to the 0.16mm
slit setting. The same methodology as in section
3.1 was used. The pattern intensity correspond-
ing to the central maximum was measured. The
heights and corresponding angles of three sec-
ondary maxima were calculated.

4 Results

The values of intermediate results and calcula-
tions can be found in Appendix ??. The calcu-
lations of all uncertainties is discussed in Section
??.

4.1 Single Slit Exercise

By rearranging Equation ??, we obtain a for-
mula for the slit width a

a =
m′λ

sin θ
(10)

(11)

where θ can be calculated by measuring the dis-
tance between the the central maximum and lo-
cal minima:

θ = arctan
x

l
. (12)

Taking the distance l between the slit opening
and the sensor to be 1.1 m and taking the av-
erage of two calculated values of a from two
different minima, we get the the value of the
slit width to be a = 0.2070 mm ±0.0003 mm.
This value is significantly different from the ex-
pected slit width value of 0.04 mm; the expected
value is roughly five times smaller than the cal-
culated value and does not lie within the calcu-
lated value’s uncertainty.

Table 1: Calculated values of slit separation
d from three different double slits. The slit
type is specified as slit width, slit separation
in mm.

Slit Type davg (mm) % difference
0.04, 0.25 1.43± 0.01 472%
0.04, 0.5 1.80± 0.04 261%
0.08, 0.25 1.49± 0.03 497%

4.2 Double Slit Exercise

4.2.1 Determining Slit Separation

Rearranging Equation ??, we obtain a formula
for the slit separation d

d =
mλ

sin θ
(13)

where the value of θ is obtained in the same
method as was explained in Section 4.1. The
calculated average values of d and their per-
centage differences from the expected values are
shown in Table 1. The expected values are
significantly smaller than the calculated values
and they do not lie within the calculated val-
ues uncertainties. Though it is worth noting
that larger/smaller calculated slit separations
correspond to larger/smaller expected slit sep-
arations.

4.2.2 Determining Slit Width

Using the exact same method as explained in
Section 4.1, the slit widths of the three dou-
ble slits discussed in Section 4.2.1 were calcu-
lated. The results are presented in Table 2.
While the expected values do not agree with our
calculated values and lie outside of their uncer-
tainties, it is seen again that larger/smaller cal-
culated slit widths correspond to larger/smaller
expected slit widths.
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Table 2: Calculated values of slit width a
from three different double slits. The slit
type is specified as slit width, slit separation
in mm.

Slit Type a (mm)
0.04, 0.25 0.1964± 0.0002
0.04, 0.5 0.2221± 0.0004
0.08, 0.25 0.4360± 0.0003

Table 3: Calculated values of the left side of
Equation ?? for three different single slits.
The value should theoretically be equal to 1
as discussed in Section ??.

Slit Width a Left side of Equation ??
0.04 mm 0.1924± 0.0008
0.08 mm 0.1924± 0.0005
0.16 mm 0.1880± 0.0011

4.3 Verifying Heisenberg’s Uncer-
tainty Principle

To verify Heisenberg’s Uncertainty Principle, we
show that Equation ?? holds. By measuring the
half width of the central maximums (l) of three
different single slit widths, we obtained three
values for the left side of the equation presented
in Table 3. These values should theoretically be
equal to 1. The expected value of 1 was around
five times greater than the calculated values and
did not lie within their uncertainties. But by
noticing that 1/4π ≈ 0.0796, we see that our re-
sults still verify Heisenberg’s Uncertainty Prin-
ciple since all of our calculated values are larger
than 1/4π.

4.4 Diffraction Pattern Analysis

By measuring and calculating the heights of
three secondary maxima in the intensity pattern
(shown in Figure 3) created by a single slit width
of 0.16 mm, we calculated their corresponding
angles θi, presented in Table 4.

To verify the intensity formula (Equation ??),

Figure 3: Light pattern produced when us-
ing a single slit width of 0.16 mm.

Table 4: Calculated values of θi correspond-
ing to three different secondary maxima pro-
duced by a single slit width of 0.16 mm.

m θi (degrees)
1 0.1855± 0.0008
2 0.2083± 0.0009
3 0.2171± 0.0013

we used the exported data from the lab software
and performed a non-linear fit using Python (the
code used for curve-fitting can be found in Ap-
pendix ??). The data and the fitted curve is
shown in Figure 4. Beyond the rough overall
shapes of the graphs, the fitted curve has little
resemblance of the collected data. Although we
are unclear on why the fit is so poor, we theo-
rize that it may have something to do with how
quickly the values in light intensity change.

4.4.1 Goodness of Fit Analysis

We first use the R-squared method to test the
goodness of fit. Using the Scipy Python library,
we were very easily able to calculate the R-
squared value. A good fit should ideally have
an R-squared value of 1. The value for our fit
was 3.876 · 10−5, which is extremely close to 0.
This indicates that the fitted curve was not a
good fit for the data.

We then use standard error to test the good-
ness of fit. Again using the Scipy library, we
calculated the standard error of our fit. A good
fit would ideally have a standard error close to
0. Our value for standard error was 0.000697 –
a value close to zero, indicating a good fit. This
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Figure 4: Data on light intensity plotted
against ϕ and fitted to the intensity for-
mula. The fitted value of I(0) is I(0) =
0.84438675. Error bars are too small to be
seen on the plot. Uncertainty in light inten-
sity is ±5 · 10−6 V.

was surprising due to how bad the fit visually
was. We theorize that the reason the value of
standard error is so small is due to the ends of
the graph where both the data and the fit are
flat.

5 Discussion

5.1 Uncertainties

There were numerous sources of instrumental
uncertainty throughout the lab that contributed
to uncertainties in calculated values. The posi-
tion measurements provided by the lab software
were accurate to five decimal places, producing
an uncertainty of ±5 · 10−6 m. The light inten-
sity measurements were provided to the same
precision, producing an uncertainty of ±5 · 10−6

V. When initially setting up for the experiment,
a measuring tape was used to determine the
distance between the slits and the light sensor.
This measuring tape had an instrumental uncer-
tainty of ±0.0005 m.

For calculating the errors in calculated val-
ues, the following error propagation formula was

used:

δQ = |Q|

√(
δa

a

)2

+

(
δb

b

)2

+ . . .. (14)

Here, Q is the value of the quantity you are cal-
culating error for, δx is the uncertainty in some
arbitrary variable, and a and b are variables used
in the calculation of the final value.

5.2 What physical quantity is the
same for the single slit and
double slit?

Physical quantities that remain the same for sin-
gle and double slits include the distance from the
slits to the sensor and the slit width a.

5.3 Comparing the distance be-
tween the single-slit central
maximum and first minimum
and the double-slit central
maximum and first diffraction
minimum

The location of the first intensity minimum for
a single slit and the location of the first diffrac-
tion minimum for a double slit are the same.
Theoretically this is true according to Equation
1 (also mentioned in the lab manual), but ex-
perimentally we see that this holds true as well.
Using a slit width of 0.04 mm for both single
and double slits, the location of the first inten-
sity minimum was measured to be consistently
around 0.0034 mm ± 0.0002 mm.

5.4 What physical quantity deter-
mines where the amplitude of
the interference peaks goes to
zero?

The slit width a determines where the amplitude
of the light intensity goes to zero. By examing
the light intensity formula (Equation 3), we can
see that as slit width a increases, the width of
the central maximum decreases, and vice versa.
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5.5 Theoretical number of inter-
ference maxima in the central
envelope for a double slit with
d = 0.25 mm and a = 0.04 mm

According to the lab manual, the first intensity
minimum is theoretically located at

θ = arcsin

(
λ

a

)
. (15)

Plugging in a = 0.04 mm, we get that θ =
0.01625 rad. Then, using Equation 2 and solving
for m, we find that

m =
d sin θ

λ

=
0.00025 sin(0.01625)

650 · 10−9

= 6.25 interference maxima

Rounding down to a whole number, this means
that there theoretically should be 6 maxima on
each side of the central envelope. But this value
includes the central maxima. Therefore theoret-
ically there should be a total of 11 interference
maxima in the central envelope.

5.6 Experimental number of inter-
ference maxima in the central
envelope for a double slit with
d = 0.25 mm and a = 0.04 mm

Experimentally, examining the graph produced
by the lab software (shown in Figure 5, there
are also 11 interference maxima located in the
central envelope, agreeing with the result we ob-
tained from Section 5.5.

6 Conclusions

Through this lab, it was experimentally verified
that the location of the first diffraction mini-
mum remains constant regardless of single slit
or double slit since its distance from the cen-
tral maximum for both cases remained within a

Figure 5: Graph produced when using a
double slit width of 0.04 mm and slit sep-
aration of 0.25 mm.

narrow range of 0.0034 mm ± 0.0002 mm. We
were unable to verify the light intensity formula
(Equation 3 due to how poorly the non-linear
fit was for the data. Furthermore, many of the
results obtained from Equations 1 and 2 were
several multiples off from the expected values.
This leads us to believe that there might have
been a systematic error in our set up. In order
to improve the quality of data in the future, we
should more carefully set up the experiment and
more trials should be performed.

7 Appendix

7.1 Data and Code

All data, calculations, and code used in this lab
are provided in the following Google Drive link:
https://drive.google.com/drive/folders/
1aTUZfrN02RqHY3M3lkasRnt8EfrDKzKe?usp=
sharing.
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