MSE160 – Midterm Study Notes

1 CATERGORIZATION OF MATTER

- 3 material classes:

Metals	 Held together by <u>metallic bonds</u>
	- Ductile (can be deformed permanently), electrically + thermally conductive,
	shiny
	 Highly organized at atomic level – <u>CRYSTALLINE</u>
Ceramics	- <u>lonic bonds</u>
	- Brittle, non-conductive
	 Can be <u>crystalline</u> or <u>amorphous</u> (disorganized)
	 E.g. porcelain, concrete, often metal oxides
Polymers	- <u>Covalent bonds</u>
("plastics")	 Tend to be ductile, not as strong as metals
	- Non-conductive
	 E.g. Teflon, Gore-Tex, polypropylene, polyethylene, PMMA, etc.
F	

- Exceptions: wood, tissue (e.g. skin), composites, semiconductors, etc.

2 ELASTIC BEHAVIOUR

2.1 Engineering Stress and Strain

- Stress and strain calculated from using original sample's cross-sectional area/length
 - X-section area decreases in reality (true stress and strain)

2.2 Atomic Definition of Young's Modulus

- "Elastic":
 - Sample returns to original geometry upon unloading
 - Strain is recoverable
 - o Atoms return to original positions upon unloading
- Model for bonding in a solid:

- E is exactly proportional to interatomic force curve when $r = r_0$:

$$E \propto \frac{dF}{dr}|_{r=r_0}$$

- E depends only on type of atoms: STRUCTURE INDEPENDENT

0

 Small changes to microstructure (composition/concentration) or strengthening do not change E

2.3 Tensile Tests

- Tensile specimen ("dogbone"):

Strain can be measured by strain gauge

2.4 Poisson's Ratio

- Extent to which a material shrinks/fattens (in x-sectional area) when elongated/compressed

- Negative ratio of radial (perpendicular) strain to axial strain:
$$v=-\frac{\epsilon_R}{\epsilon_x}=-\frac{\epsilon_y}{\epsilon_y}$$

$$= -\frac{1}{\epsilon_z} = -\frac{1}{\epsilon_z} = -\frac{1}{\epsilon_z}$$

2.5 Shear Stress and Strain

- Shear loading: force applied parallel to an area
 - Causes sample to become <u>skewed</u>

Shear Stress:
$$\tau = \frac{F}{A_0}$$

Shear Strain: $\gamma = \frac{\Delta l}{l_0}$
Hooke's Law for shear stress and strain: $\tau = G\gamma$
• G = shear modulus

• G is related to Young's Modulus, E:

$$E = 2G(1+v)$$

3 INELASTIC BEAHVIOUR

3.1 Permanent Deformation ("Plastic Deformation")

- 1. Upon unloading, sample doesn't return to original dimensions
- 2. Strain does not return to 0
- 3. Atoms move to new positions
- 4. Near end of linear region

- Ceramics:
 - Usually don't test in tension:
 - Crumbles in grip
 - Difficult to form/machine
 - Machine alignment difficult

$$\sigma_{3pt} = \frac{3FL}{2wh^2}$$

3.2 Tempered Glass

- High strength
- "safe" when fractured breaks into small pieces

cross-section	J rapidiz co	ol curtices.	- Eas
		hot - large	volume.
	1		
	J F		"frozen in"
	- conpression 4	- 000	Crass Volue.
	< tension >>	- bet la	ger volve.
	- conpression -		

- Hot middle tries to shrink pulls on cold outer part
- But ceramics are good under compression (won't break)
 - If you put it in bending, it takes more force to get other side to get to tensile state (since it's prestressed in compression)
- Residual stress in glass = stored strain energy
- When glass fractures: liberated as surface energy = surface area = small pieces = safer
- Tempered glass also can be made chemically (e.g. gorilla glass)
 - Diffusing ions into glass

4 STRUCTURE-PROPERTY RELATIONSHIP

4.1 Modulus vs Density Chart

4.2 Intro to Ordered Solids

- <u>Polycrystalline</u>: made of crystals
 - Around the micron scale
 - o Crystals that make up polycrystalline materials are called "grains"
- Many materials are crystalline

- Most metals, some ceramics (e.g. sapphire)
- Not everything is crystalline
 - Amorphous not organized (e.g. window glass)

5 STRUCTURES

5.1 Face-Centred Cubic (FCC)

- Many metals

- Calculating Theoretical Density:

$$\rho = \frac{mass}{volume} = \frac{nA}{N_A} \cdot \frac{1}{V_c} = \frac{nA}{V_c N_A} [=] \frac{g}{m^3}$$

- n = # atoms per unit cell
- \circ A = molar mass
- \circ V_c = volume of unit cell
- \circ N_A = Avogadro's Number
- Atomic Packing Factor (APF)

$$APF = \frac{V_{atoms}}{V_{unitcell}} = \frac{n \cdot \frac{4}{3}\pi R^3}{a^3}$$
$$APF_{FCC} = 0.74 = 74\%$$

5.2 Rock Salt Ceramic Crystal Structure

- Coordination number = # of atoms that are touching any give atom

 $coordination number_{rocksalt} = 6$

- Lattice parameter: $a_{rocksalt} = 2(R_A + R_C)$

STRUCTURES SUMMARY

Structure	Picture	а	n	Coord #	
FCC		$2\sqrt{2}R$	4	12	
Rock Salt		$2(R_A + R_C)$	4 cat, 4 an	6	
BCC		$\frac{4}{\sqrt{3}}R$	2	8	
НСР		2 <i>R</i>	6	12	
Simple Cubic		2R	1	6	

SECTION 4.1 CRYSTALLOGRAPHIC PLANES AND DIRECTIONS

4.1.1 Crystallographic Directions

- 1. Translate vector if it simplifies things
- 2. <u>Proj</u>ection onto x, y, z
- 3. <u>Red</u>uce to lowest integer values
- 4. Enclose in square brackets
 - a. Negatives go above (bar), no commas

Families of directions: vectors with same atoms in same positioning

- Same process as above, drop negative, move zeroes to front, triangular brackets

4.1.2 Crystallographic Planes (Miller Indices)

- 1. Translate plane so origin is not on plane or redefine origin
- 2. Determine distance to intercept plane by travelling along each axis from origin
- 3. Take <u>rec</u>iprocal
- 4. Enclose in parentheses (h k l)
 - a. Negatives go above (bar), no commas

Families of planes: same atoms in same positions – look the same in 2D, same planar packing fraction

- Move zeroes to left, square brackets
- Reduce negative signs (multiply by -1)

4.1.3 Bragg's Law for X-ray Diffraction

- Condition for constructive interference: $n\lambda = 2d_{hkl} \sin \theta$
 - o n is a positive integer
 - o lambda = wavelength
 - \circ d_{hkl} = interplanar spacing
 - \circ θ = incident angle

6 MECHANICAL BEHAVIOUR

6.1 Stress-Strain Behaviour

- Proportional Limit: when linear elastic region ends
 - Hard to define without experiment
- Defining start of plastic deformation:
 - Yield strength: when plastic deformation begins (in practice)
 - 0.2% offset yield strength: at ϵ = 0.002, draw parallel line to curve (slope = E), line intercepts original curve = 0.2% offset yield strength

6.2 Uniform and Non-uniform Deformation

- Uniform: deformation is distributed evenly and equally throughout sample
- Non-uniform: deformation is localized/isolated to a particular region
- Why stress strain curve decreases after UTS:
 - o As metal is loaded to higher stress, bonds start to break between metal atoms
 - In theory: bond breaking could occur anywhere in sample
 - In practice: bond breaking occurs around defect/scratches/pores/oxide inclusions, etc.
 - Regions of broken bonds come together, forms larger crack
 - o Larger crack leads to final fracture

- In tensile specimen necking occurs cross sectional area is reduced
- Cross sectional area reduced = less force needed to keep deforming metal
 - Note: true stress still increases, but not fast enough to counter decreasing cross sectional area
- We plot <u>engineering stress</u> = force/<u>original</u> area
- Original area is constant, force decreases, so engineering stress decreases

7 IMPERFECTIONS

7.3 0D Imperfections (Point Defects)

Interstitial (e.g. C in Fe)

- Solute atoms are typically much smaller than solvent atoms
- Pushes atoms apart creates lattice strain

- Impurities tend to diffuse towards dislocations (decreases energy of system)
- Impurity atoms "pin" dislocation
 - Makes it harder for dislocation to move harder for plastic deformation

Substitutional (e.g. Cu in Ni)

- Tend to have similar size (within 10%), electronegativity, etc.

- Strain fields created by dislocation and impurity interact
- More difficult for dislocation to move through lattice when close to an impurity vs an undisturbed lattice
- Impurities inhibit dislocation movement
- Impurities strengthen materials

Vacancies

- Vacancy formation = battle between temperature and binding energy of lattice
 O Greater temperature = more vacancies
- Population of vacancies:

$$\frac{N_v}{N} = \exp(-\frac{Q_v}{kT})$$

- N = number of sites
- k = Boltzmann constant
- \circ Q_v = energy to form vacancy
- T = temperature (K)
- Vacancies are the only crystalline imperfection NOT used to strengthen materials

7.1, 7.4 1D Imperfections – the Dislocation

- A 1D imperfection (a line)

- Step by step motion of linear imperfections is mechanism for plastic deformation

- Step by step breaking and reforming of bonds = mechanism for plastic deformation
- Dislocation density: typically 10⁴/mm² (annealed/heated to relieve internal strain energy) to 10¹⁰/mm² (heavily deformed plastic deformation increases dislocation density)
- High dislocation density = high strength
 - Dislocations have difficulty moving past each other (strain fields interact)

7.5 2D Imperfections (Interfacial)

Free Surface

- Free surfaces have fewer nearest neighbour atoms
- Unsatisfied bonds
- Elevated energy (surface energy)

- Example: drops of water tend to come together
 - Individually they have greater surface energy
 - Together = lower surface energy, lower surface/volume

Internal Surface

- Elevated energy (unsatisfied bonds) at boundaries
- Behaviour of dislocations at grain boundaries:
 - Must change direction
 - o Planar mismatch
 - Meets lattice strain (due to irregular spacing of atoms)
- Grain boundaries inhibit dislocation movement
- **<u>Strengthen metal by decreasing grain size</u>** (small grain size = more grain boundaries)

7.6 3D Imperfections

- Types: pores (bubbles), second phases

Second Phase (e.g. Fe₃C in steel)

- Second phase is often hard (high strength) difficult for dislocation movement in them
- Difficulties for dislocation movement at grain boundary between phases
- Many aluminum alloys strengthened by precipitation hardening
 - o 2nd phase particles precipitate out of solution

8 POLYMERS

- Plastic deformation, dislocation, melting – all overcome INTERmolecular bonds, not intra

8.2 Mechanical Behaviour of Polymers

- General stress-strain curve:

- Think of polymers as noodles, chains, strings, etc. tangled together
- Each chain has a "mer unit" basic repeating unit
 - Naming based on this unit
- When you apply tension to polymer:

- Chains become oriented
 - Very difficult to break intramolecular bonds why polymers can continue to bear load
 - Alignment of polymer molecule with loading axis = "chain orientation"
- Pulling in perpendicular direction pulling on weak intermolecular bonds easy to deform

8.3 Some Polymers

- Refer to notes

8.4 Molecular Weight

- Use mass to describe length of chains:
 - Number average: $\overline{M} = \sum \overline{M_i} x_i$
 - M_i = average molar weight of bin
 - x_i = number of molecules in bin i
 - Weight average (molecular weight): $\overline{M} = \sum \overline{M_i} w_i$
 - w_i = weight fraction of total weight of bin i
- Weight average is always greater than number average (counts heavier molecules more)
 - Dispersity: gives indication of breadth of distribution

$$D = \frac{M_{weight}}{M_{number}}$$

8.5 Polymer Crystallinity and Tacticity

- Crystalline: ordered, more weak bonds
 - Greater strength, greater elastic modulus (kind of Young's modulus)
- Amorphous: not ordered, less weak bonds
- Semi-crystalline: both crystalline and amorphous sections
- How to increase crystallinity?
 - Simpler mer units (bulky ones do not pack as well)
 - TACTICITY: arrangement of repeating structures
 - Isotactic same side
 - Syndiotactic alternating side
 - Atactic random arrangement
 - Longer branches are bad for crystallinity

8.6 Intramolecular Bonds

- How to increase strength of weak bonds?
 - o Dipoles
 - Hydrogen bonds strongest intermolecular bonds = strong polymers
 - Occur when H is bonded to O, N, or F

8.7 Cross-Linking and Network Polymers

Cross-Linking:

- Strong covalent bonds between chains (instead of weak secondary bonds)
- E.g. vulcanizing rubber, PEX tubing
- Important in elastomers

Network Polymers:

_

- 3D interconnected network
- High strength, brittle
- E.g. Epoxy, diamond

8.8 Effects of Temperature on Stress-Strain Behaviour

- In metals/ceramics: strong intramolecular bonds = not easily affected by temperature
 - In polymers: weak intermolecular bonds = affected much more by temperature • Competition between binding energy and thermal energy

8.9 Relaxation Modulus

- When applying a fixed strain, stress relaxes overtime
 - E.g. Nylon strings on guitar, piano wires
- <u>Relaxation Modulus</u>: $E_R = \frac{\sigma(t)}{\epsilon_0}$

- Plotting relaxation modulus against time: decreases over time
- Plotting relaxation modulus at a specific time at different temperatures: decreases at higher temperatures
 - 2 sudden drops in modulus: glass transition temp, melting temp
 - o Glass transition temp: overcoming secondary bonds in amorphous region
 - Melting temp: overcoming secondary bonds in crystalline region

- Network polymers don't melt can't break strong covalent bonds
 - Polymers that don't melt are called "Thermoset"
- Highly crystalline polymers will melt called "Thermoplastic"

8.10 Viscoelasticity

- Polymers are sensitive to strain rate how fast you deform them
- They are <u>viscoelastic</u> both viscous and elastic
 - Viscous: resistant to fast changes
 - Elastic: instantaneous return to original structure
- Longer amount of time deformed = more viscous
- Less amount of time deformed = elastic

8.11 Optical Transparency

- Crystalline and amorphous regions have different index of refraction scatters light
 - Scattering light (light doesn't go straight through) = translucency
- To be transparent:
 - Can't be semicrystalline
 - Polymers can never be 100% crystalline
 - Must be 100% amorphous
- E.g. PMMA has large side group prevents crystallization, remains 100% amorphous transparent

9 ATOMIC BONDING STRUCTURE AND SEMICONDUCTORS

9.1 The Electromagnetic Spectrum

- Energy of photon:

$$E = \frac{hc}{\lambda}$$
 OR $E = hv$

- h = Planck's constant = 6.626e-34 J s = 4.136e-15 eV s
 - eV = "electron volt" = amount of energy an electron, has accelerated through 1V
 - 1 eV = 1.602e-19 J
- c = speed of light = 3e8 m/s
- \circ λ = wavelength
- v = frequency of wave = c/λ [Hz]

9.2 The Atom

Wave Mechanical Model

4 quantum numbers (QN):

- 1. Principal shells/size
 - a. n = 1, 2, 3, 4... or n = K, L, M, N...
- 2. Angular/Azimuthal subshell shape
 - a. I = 0, 1, 2, ..., (n-1) or I = s, p, d, f
- 3. Magnetic orbital spatial orientation
 - a. -l <= m_l <= l
 - b. E.g. p subshell: p_x , p_y , p_z , m_l = -1, 0, 1
- 4. Spin "spin"
 - a. $m_s = +/- \frac{1}{2}$

9.3 Electron Configuration

- Shorthand: [largest noble gas] + valence
- Always write in increasing shell number

- Always ionize higher shell number first
- Inert gases will always have octet stability (ns²np⁶)

9.4 Atomic Bonding

lonic

- 2 logical steps
 - Achieving low energy (by electron transfer) (achieve stable octet)
 - Charge/coulombic attraction
- Non-directional attraction (not between specific nuclei)

Covalent

- Electron sharing to achieve octet stability
- Hybridization often occurs

<u>Metallic</u>

- Valence electrons contribute to a sea of electrons
- Sea of electrons conducts electricity

9.5 Band Theory of Solids

- Energy levels in different atoms split when they get close since electrons can't have same energy level (Pauli Exclusion principle)
- Forms continuous range of energy levels a band

- Bandgap > 4 eV = insulator
- Bandgap < 4 eV = semiconductor
- Higher bandgap = transparent (visible light can't be absorbed passes right through)
- Lower bandgap = more photon absorption and emission (less transparent)

9.6 Diamond Cubic Crystal Structure

- Same as zinc-blende but just all same atom

- Tetrahedral configuration/interstitial site in subcubes
- Coordination number = 4
- n = 4 (from FCC positions) + 4 (from tetrahedral sites) = 8 atoms

9.7 Semiconductors

<u>Intrinsic</u>

$$\sigma = nq(\mu_n + \mu_p)$$

- n = concentration of charge carrier [#/m³]
- q = fundamental charge [C]
- μ = charge carrier mobility [m²/Vs]

Extrinsic n-type

- Add something pentavalent
- Majority charge carrier = weakly bonded 5th electron (negative)
- Donor energy level right under conduction band

Extrinsic p-type

- Add something trivalent
- Majority charge carrier = holes (positive)
- Acceptor level right above valence band

9.8 Compound Semiconductors and Mixed Bonding

- Compound semiconductors have mixed bonding (characteristics between ionic and covalent bonding)
- Compound semiconductors: emit and absorb light
 - Emitted light is equal to bandgap of semiconductor
- Ex: GaAs and AlAs have different bandgaps

$$Ga_xAl_{1-x}As$$

- As is 50%
- Other 50% is 100x% Ga and 100(1-x)% of Al
- o Emits photon with chosen energy between bandgaps of GaAs and AlAs

9.9 Size of Tetrahedral Interstitial Site

$$\frac{R_C}{R_A} = 0.225$$

10 THERMODYNAMICS

- Entropy: uncertainty in knowing precisely the energy that an atom/molecule will have
 - How spread out energy is (the more spread out, the more possible microstates there are)

$$\Delta S = \frac{q_{rev}}{T}$$

- Second Law: entropy of universe must increase
 - First Law: energy cannot be created/destroyed
 - For isolated system: $\Delta U_{sys} = 0$
 - For closed system: $\Delta U_{SYS} = q + W$
 - q = heat (heat in is positive)
 - W = work done on system (work done on system is positive)
- Enthalpy:

_

11 PHASE EQUILIBRIUM