VECTOR SPACE

- Composed of a set V and the two operations of vector addition and scalar multiplication
- Must satisfy the 8 axioms in Medici
- Subspace of V is a subset W \subseteq V that is itself a vector space
 - Has same operations of addition and multiplication as V
 - Theorem: a non-empty subset W is a subspace of V $iff cx + y \in W$ when x, y in W
- 5.3 Prop. 1: if S is a subset of vector space V, then spanS is a subspace of V

DIMENSION

- Number of basis vectors for a vector space
 - $\hbox{$\circ$ } \hbox{ Fundamental Theorem the number of vectors in a linearly } \\ \hbox{ independent list of vectors in V cannot exceed $\dim V$ } \\$
- Existence of Bases Theorem (6.4 Theorem V) any LI list of vectors can be extended to a basis for V
 - o (6.4 Theorem VI) if U is a subspace of n-dimensional V, then dimU <= n
 - $\bullet \quad \dim \mathbf{U} = \mathbf{n} \text{ iff } \mathbf{U} = \mathbf{V}$
 - o (6.4 Theorem VII) any spanning set for V contains a basis for V
 - o (6.4 Theorem VIII) if $\dim V = n$, then 1) any set of n vectors that is LI is a basis for V, and 2) any set of n vectors that spans V is a basis for V

RANK

- Column Space span of columns of A $\{Ax \mid x \in R\}$
 - Can write matrix vector product Ax as LC of columns in matrix
 - Can write matrix product AB as a matrix where each column is a LC of columns in A
 - col AB \subseteq col A
 - Lemma if each column in C is an LC of the columns of A, then there exists a matrix B such that C = AB
- Row Space span of rows of A (= span of columns of $A^T = \{A^Tx \mid x \in R\}$)
 - Row operations change column space, don't change row space
- Rank rank A = dim col A (number of LI columns of A)
- Theorem A is invertible iff col A = nR
- Theorem A is invertible iff rank A = n
- Rank Theorem for any matrix A: $\dim \operatorname{col} A = \dim \operatorname{row} A = \operatorname{rank} A$

- $(7.4 \text{ Property II}) \text{rank } A = \text{rank } A^T$
 - o Theorem rank $A = rank A^T = rank A^T A = rank AA^T$
- (7.4 Property III) rank AB <= min{rank A, rank B}
- Theorem rank $A \le rank [A|b]$, and Ax = b has a solution iff rank A = rank [A|b]
- Full Row/Column Rank (7.4 Theorem IV and V) rank A = number of rows/columns
 All rows/columns are LI
- 7.2 Prop 1 Theorem if B has full column rank, then rank A = rank BA
 - Multiplying a matrix on the left by a matrix with full column rank doesn't change its rank
- **Theorem** if C has full row rank, then rank A = rank AC
 - Multiplying a matrix on the right by a matrix with full row rank doesn't change its rank
- **Theorem** A has full column rank $iff A^{T}A$ is invertible, A has full row rank $iff AA^{T}$ is invertible

NULL SPACE

- Null Space set of solutions to the homogeneous system Ax = 0
 - $\circ \{x \mid Ax = 0\}$
- $\mathbf{Nullity}$ $\mathbf{nullity}$ $\mathbf{A} = \dim \mathbf{null} \ \mathbf{A}$
- Rank-Nullity Theorem (7.4 Theorem II) nullity A = n rank A

COORDINATES

- **Theorem** $[cx + y]_a = c[x]_a + [y]_a$
- 8.4 Theorem I coordinates preserve linear independence
- Change of Basis Matrix $[x]_b = P_{ba}[x]_a$ where columns of P_{ba} are coordinate vectors of basis vectors for a WRT basis b
 - o Theorem Inverse of matrix is P_{ab}

DETERMINANT

- A determinant function unique, alternating, multilinear
 - \circ Any alternating multilinear function f satisfies $f(A) = (\det A)f(I)$

- **THE Determinant** unique, alternating, multilinear function on the rows of matrix A, where its value on the identity matrix I is 1
 - o Determinant of a 2x2 matrix det[ab; cd] = ad bc
 - o If A has equal rows, then det A = 0
 - o If A has an entire row of zeros, then det A = 0
 - o If rows of A are LD, then det A = 0
- ij minor of an nxn matrix A omit the ith row and jth column of A (A_{ij})

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij}$$
 - expanding along the rows

- Theorem
 - o Can also expand along columns

Theorem VI. INVERTIBILITY THEOREM: Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$. Then \mathbf{A} is invertible if and only if $\det \mathbf{A} \neq 0$.

- o If A is not full rank, $\det A = 0$
- o If detA!= 0, rows of A are LI
- **Product Theorem** if A and B be nxn matrices, then detAB = detA detB
- Theorem if A is invertible then det $A^{-1} = (\det A)^{-1}$
- Adjoint of A nxn matrix whose ij entry is $(-1)^{i+j} det A_{ii}$
- Theorem A(adj A) = (det A)I
 - $\circ \quad \text{if A is invertible, } A^{\text{--}1} = (1/\text{det}A) \\ \text{adj} A$
- Transpose Theorem $\det A^T = \det A$
- Cramer's Rule solution to Ax = b is: $x_i = \frac{\det B_i}{\det A}$
 - $\circ \quad B_i \, \mathrm{is \ same \ as \ } A \ \mathrm{but \ replace \ ith \ column \ of \ } A \ \mathrm{by \ b}$

EIGENVALUES AND EIGENVECTORS

- Eigenvector of A (nxn matrix): a NON-ZERO vector where $Ax = \lambda x$
 - \circ λ is an **eigenvalue** of A corresponding to x
 - o Eigenspace corresponding to eigenvalue λ : subspace containing set of all eigenvectors corresponding to that eigenvalue (together with the zero vector)
 - $\circ \quad \boldsymbol{E}_{\lambda}(\boldsymbol{A}) = \{x \in {}^{n}R \mid Ax = \lambda x\} = \boldsymbol{null}(\lambda \boldsymbol{I} \boldsymbol{A})$
- 10.2 Prop. 1: the intersection of two different eigenspaces is the zero vector
- Characteristic polynomial of A: $p_A(\lambda) = \det(\lambda I A)$

$$c_{\mathbf{A}}(\lambda) = \lambda^{n} - (\operatorname{tr} \mathbf{A})\lambda^{n-1} + \dots + (-1)^{n} \det \mathbf{A}$$

o Degree of exactly n

• As a result: an nxn matrix A can have at most n distinct eigenvalues

- TO SOLVE FOR EIGENVALUES AND EIGENVECTORS:

- \circ λ is an eigenvalue iff $\lambda I A$ is non-invertible iff $\det(\lambda I A) = 0$ iff $p_A(\lambda) = 0$
- o $iff \lambda$ is a ROOT of characteristic polynomial
- For eigenvector/eigenspaces: $E_{\lambda}(A) = null(\lambda I A)$

DIAGONALIZATION

- A and B (nxn) are similar if there exists an invertible nxn matrix S such that $A = SBS^{-1}$
 - Same determinant, rank, characteristic polynomial, eigenvalues, and trace
- **Diagonal Matrix**: all entries except for diagonal are 0
- Diagonalizable Matrix: nxn matrix A similar to an nxn diagonal matrix D $(A = SDS^{-1})$
 - o Diagonal entries of D are eigenvalues
 - o S is change of basis matrix from eigenbasis to standard basis
 - o **Diagonalization Theorem**: A is diagonalizable *iff* A's eigenvectors are a basis for ⁿB
- 10.3 Theorem II: if A is an nxn matrix with exactly n distinct eigenvalues, then detA is the product of the eigenvalues and the trA is the sum of the eigenvalues
- MULTIPLICITIES:
 - Algebraic of λ : number of times λ appears as a root of $p_A(\lambda)$
 - \circ Geometric of λ : dim $E_{\lambda}(A)$
 - Multiplicity Theorem: 1 <= geometric <= algebraic
- CONDITIONS FOR DIAGONALIZATION:
 - o Diagonalization Theorem
 - o 10.4 Theorem III: if A (nxn) has n distinct eigenvalues, then A is diagonalizable
 - o 10.5 Theorem VI (Diagonalization Test): A (nxn) is diagonalizable *iff* the geometric and algebraic multiplicities of each eigenvalue are equal

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Theorem: Let A be a $n \times n$ diagonalizable matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ (not necessarily distinct). Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for \mathbb{R}^n consisting of eigenvectors of A. If $\mathbf{x}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$, then the system $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}_0$ has solution

$$\mathbf{x}(t) = e^{\lambda_1 t}(c_1 \mathbf{v}_1) + e^{\lambda_2 t}(c_2 \mathbf{v}_2) + \dots + e^{\lambda_n t}(c_n \mathbf{v}_n)$$