DATA STRUCTURES vs ABSTRACT DATA TYPES (ADTs) vs ALGORITHMS

- ADTs — what you want to do

o Represent a set of behaviours on a domain of data types
- Data structures — how you will implement it

o Ways of organizing data to implement an ADT
- Algorithms

o Using ADTs to achieve something

Contiguous vs. Linked Data Structures:

- Contiguously allocated — single slabs of memory
o Arrays, matrices, heaps, hash tables

- Linked — distinct chunks of memory connected by pointers
o Lists, trees, graphs

ABSTRACT DATA TYPES (ADTs)
Stacks

- LIFO retrieval
- Operations:
o Push(x, s): insert item x at top of stack s
o Pop(s): Remove and return top of stack s
- Data Structure implementation:
o Arrays
o Linked lists

Queues

- FIFO retrieval
- Operations:

o Enqueue(x, g): Insert x at back of q

o Dequeue(q): Remove and return front of q
- Data Structure implementation:

o Arrays

o Linked lists

Priority Queue

- Retrieval: highest priority dequeued first
- Operations:
o Insert(x, g): insert element with priority x into q
o Find_min(q): return element with smallest value from g
o Delete_min(q): remove item with smallest value from ¢
- Data Structure implementation:
o Unsorted array/linked list

= O(1) forinsert, O(n) for extraction
o Sorted array/linked list
= Q(n) for insert, O(1) for extraction
o Heap (most efficient implementation of PQ)
= Of(logn) for insert, O(logn) for extraction, O(1) for returning min

Graphs

- Can have directed and weighted graphs
Data Structure implementation:

o Adjacency Matrix

o Adjacency List

= Each node has a list of connections

Traversal Algorithms:

o Breadth First Search

o Depth First Search
Shortest Path Algorithms:

o Dijkstra’s Algorithm

o A* Algorithm

Dictionary/Map

- Collection of key-value pairs
- Operations:

o Get(D, k): get value at k

o Put(D, k, v): insert key-value pair k-v into D
- Data Structure implementation:

o Hash Tables

DATA STRUCTURES

Array
Linked List (refer to lab 4 solutions)
Heap (refer to minpq lecture code)

- Complete tree (filled in from left to right)
- Parent < child (for min pqgs)
- Stored as an array
- Operations:
o Insert: insert item at last position, percolate up
o Remove: swap first and last position, remove last item (min), percolate down
- Heapify
o Starting from parent of last item and working down to first item, percolate down
- Heapsort

o Heapify array, then remove min one at a time (and put into new array)
Binary Search Tree (BST) (refer to lecture code for C and lab 6 for python)

- All nodes in left subtree < root; right subtree > root
o Need comparator function in struct of BST

- Operations:
Insert: compare item with root, recursively compare item with left/right subtree

= Until root = NULL
o Delete:
= No children: delete

= One child: replace node with child
= Two children: swap node with next largest node (successor), delete node

e To find successor: in right subtree, find left most descendant

O

AVL Tree (refer to lecture code)

- Balanced BST — for every node, height of right and left subtree differs by at most 1
- Must balance the tree after every insertion/deletion

Hash Tables (refer to lecture code)

- Array of table elements (key-value pairs)
- Requires hash function, hash(key, table_size) — returns what index in array to place item

- Closed vs Open hashing:
o Closed — keeps data inside table (uses probing to avoid collisions)
= Probe function, probe(i, key) — returns how much to add to current index to
determine which index you should try next
o Open —keeps data in a linked list at each index

ALGORITHMS

Graph Traversal Algorithms (refer to lab 5)

Each node is either undiscovered, discovered, or processed (in that order)
o Processed: visited all its edges
- Breadth First Search (BFS) — keeps queue of unprocessed nodes
o Start with a node in Q
o While Qis not empty:
= Dequeue (processed the node)
= Enqueue node’s undiscovered connections
Depth First Search (DFS) — keeps stack of unprocessed nodes (can also do recursively)
o Start with a node in stack
o While stack is not empty:
= Pop (processed the node)
= Push node’s undiscovered connections

Shortest Path Algorithms (Graphs)

Dijkstra’s Algorithm (refer to lab 5 solutions)

Calculates shortest path between given vertex and all vertices in graph (and previous vertex)
Have list of visited nodes (and their shortest path)
Have PQ of unvisited nodes with their priority value being distance to starting node (algorithm
visits the next most promising node)
While PQ is not empty:

o Dequeue to visit node, add data to visited node list

o When visiting a node, iterate through each of its connections, update info in PQ

A* Algorithm

Same as Dijkstra but uses a heuristic function to determine a node’s priority in queue

OTHER

Shifting Bits

Dividing/multiplying by 2

o Equivalent of shifting decimal place in base 10 (div/mult by 10)
Shift right is dividing: a >> 2
Shift left is multiplying: a << 2

Strings (refer to lecture code and lab 3)

