
DATA STRUCTURES vs ABSTRACT DATA TYPES (ADTs) vs ALGORITHMS

- ADTs – what you want to do

o Represent a set of behaviours on a domain of data types

- Data structures – how you will implement it

o Ways of organizing data to implement an ADT

- Algorithms

o Using ADTs to achieve something

Contiguous vs. Linked Data Structures:

- Contiguously allocated – single slabs of memory

o Arrays, matrices, heaps, hash tables

- Linked – distinct chunks of memory connected by pointers

o Lists, trees, graphs

ABSTRACT DATA TYPES (ADTs)

Stacks

- LIFO retrieval

- Operations:

o Push(x, s): insert item x at top of stack s

o Pop(s): Remove and return top of stack s

- Data Structure implementation:

o Arrays

o Linked lists

Queues

- FIFO retrieval

- Operations:

o Enqueue(x, q): Insert x at back of q

o Dequeue(q): Remove and return front of q

- Data Structure implementation:

o Arrays

o Linked lists

Priority Queue

- Retrieval: highest priority dequeued first

- Operations:

o Insert(x, q): insert element with priority x into q

o Find_min(q): return element with smallest value from q

o Delete_min(q): remove item with smallest value from q

- Data Structure implementation:

o Unsorted array/linked list

▪ O(1) for insert, O(n) for extraction

o Sorted array/linked list

▪ O(n) for insert, O(1) for extraction

o Heap (most efficient implementation of PQ)

▪ O(logn) for insert, O(logn) for extraction, O(1) for returning min

Graphs

- Can have directed and weighted graphs

- Data Structure implementation:

o Adjacency Matrix

o Adjacency List

▪ Each node has a list of connections

- Traversal Algorithms:

o Breadth First Search

o Depth First Search

- Shortest Path Algorithms:

o Dijkstra’s Algorithm

o A* Algorithm

Dictionary/Map

- Collection of key-value pairs

- Operations:

o Get(D, k): get value at k

o Put(D, k, v): insert key-value pair k-v into D

- Data Structure implementation:

o Hash Tables

DATA STRUCTURES

Array

Linked List (refer to lab 4 solutions)

Heap (refer to minpq lecture code)

- Complete tree (filled in from left to right)

- Parent < child (for min pqs)

- Stored as an array

- Operations:

o Insert: insert item at last position, percolate up

o Remove: swap first and last position, remove last item (min), percolate down

- Heapify

o Starting from parent of last item and working down to first item, percolate down

- Heapsort

o Heapify array, then remove min one at a time (and put into new array)

Binary Search Tree (BST) (refer to lecture code for C and lab 6 for python)

- All nodes in left subtree < root; right subtree > root

o Need comparator function in struct of BST

- Operations:

o Insert: compare item with root, recursively compare item with left/right subtree

▪ Until root = NULL

o Delete:

▪ No children: delete

▪ One child: replace node with child

▪ Two children: swap node with next largest node (successor), delete node

• To find successor: in right subtree, find left most descendant

AVL Tree (refer to lecture code)

- Balanced BST – for every node, height of right and left subtree differs by at most 1

- Must balance the tree after every insertion/deletion

Hash Tables (refer to lecture code)

- Array of table elements (key-value pairs)

- Requires hash function, hash(key, table_size) – returns what index in array to place item

- Closed vs Open hashing:

o Closed – keeps data inside table (uses probing to avoid collisions)

▪ Probe function, probe(i, key) – returns how much to add to current index to

determine which index you should try next

o Open – keeps data in a linked list at each index

ALGORITHMS

Graph Traversal Algorithms (refer to lab 5)

- Each node is either undiscovered, discovered, or processed (in that order)

o Processed: visited all its edges

- Breadth First Search (BFS) – keeps queue of unprocessed nodes

o Start with a node in Q

o While Q is not empty:

▪ Dequeue (processed the node)

▪ Enqueue node’s undiscovered connections

- Depth First Search (DFS) – keeps stack of unprocessed nodes (can also do recursively)

o Start with a node in stack

o While stack is not empty:

▪ Pop (processed the node)

▪ Push node’s undiscovered connections

Shortest Path Algorithms (Graphs)

Dijkstra’s Algorithm (refer to lab 5 solutions)

- Calculates shortest path between given vertex and all vertices in graph (and previous vertex)

- Have list of visited nodes (and their shortest path)

- Have PQ of unvisited nodes with their priority value being distance to starting node (algorithm

visits the next most promising node)

- While PQ is not empty:

o Dequeue to visit node, add data to visited node list

o When visiting a node, iterate through each of its connections, update info in PQ

A* Algorithm

- Same as Dijkstra but uses a heuristic function to determine a node’s priority in queue

OTHER

Shifting Bits

- Dividing/multiplying by 2

o Equivalent of shifting decimal place in base 10 (div/mult by 10)

- Shift right is dividing: a >> 2

- Shift left is multiplying: a << 2

Strings (refer to lecture code and lab 3)

