ECE286-Probability and Statistics

What is the probability of me passing this course

Regis Zhao ${ }^{1}$
University of Toronto
regis.zhao@mail.utoronto.ca

[^0]
Contents

I Probability 1
1 Introduction 1
2 Sample Space 1
3 Events 1
4 Counting 2
4.1 Permutations with Identical Items 2
4.2 Partitions 2
4.3 Combinations 3

5 Probability of an Event $\quad 3$
5.1 Additive Rules 4

6 Conditional Probability, Independence, and the Product Rule 4
6.1 Conditional Probability 4
6.2 Independence 5
6.3 Product Rule 5

7 Bayes' Rule $\quad 5$
7.1 Total Probability $\quad 5$
7.2 Bayes' Rule 6

II Random Variables and Probability Distributions 8
8 Concept of a Random Variable 8
9 Discrete Probability Distributions 8
10 Continuous Probability Distributions 8
11 Joint Probability Distributions 9
11.1 Marginal Distributions 9
11.2 Conditional Distributions 10
11.3 Statistical Independence 10

III Mathematical Expectation 11
12 Mean of a Random Variable 11
13 Variance and Covariance of Random Variables 12
13.1 Variance 12
13.2 Covariance 12
13.3 Correlation Coefficient 13
14 Means and Variances of Linear Combinations of Random Variables 13
14.1 Means of LCs of RVs 13
14.2 Variances of LCs of RVs 14
IV Common Discrete Probability Distributions 15
15 Uniform Distribution 15
16 Binomial Distribution 15
17 Multinomial Distribution 15
18 Hypergeometric Distribution 15
19 Negative Binomial Distribution 16
19.1 Geometric Distribution 16
20 Poisson Distribution 16
V Continuous Probability Distributions 18
21 Continuous Uniform Distribution 18
22 Normal Distribution 18
22.1 Standard Normal Distribution 18
23 Normal Approximation to the Binomial Distribution 19
24 Gamma and Exponential Distributions 19
25 Chi-Squared Distribution 20
26 Weibull Distribution 20
VI Functions of Random Variables 21
27 Transformations of Variables 21
28 Moments and Moment-Generating Functions 21
28.1 Linear Combinations of Random Variables 22
VII Sampling 23
29 Measures of Location: Sample Mean and Median 23
30 Measures of Variability 23
30.1 Sample Range and Sample Standard Deviation 23
31 Visualization 24
31.1 Histogram 24
31.2 Box-and-Whisker Plot 24
VIII Sampling Distributions 25
32 Random Sampling 25
33 Statistics and Sampling Distributions 26
34 Sampling Distribution of Means and the Central Limit Theorem 26
34.1 The Central Limit Theorem (CLT) 26
34.2 Sampling Distribution of the Difference Between Two Means 27
35 Sampling Distribution of Variance 28
35.1 Degrees of Freedom as a Measure of Sample Information 28
$36 t$-Distribution 29
$37 \boldsymbol{F}$-Distribution 30
37.1 The F-Distribution with Two Sample Variances 30
38 Quantile and Probability Plots 31
38.1 Normal Quantile-Quantile Plot 32
IX Estimation 33
39 Classical Methods of Estimation 33
39.1 Unbiased Estimator 33
39.2 Variance of a Point Estimator 33
39.3 Interval Estimation 34
40 Single Sample: Estimating the Mean 34
40.1 One-Sided Confidence Intervals 35
40.2 Estimates with Unknown σ 35
41 Standard Error of a Point Estimate 35
42 Prediction Intervals 36
43 Tolerance Limits 37
43.1 Comparison of Intervals 37
44 Two Samples: Estimating the Difference between Two Means 37
44.1 Two Samples with Unknown Variance 38
44.1.1 Equal Variances 38
44.1.2 Different Variances 38
45 Paired Observations 39
46 Single Sample: Estimating a Proportion 39
46.1 Choice of Sample Size 40
47 Single Sample: Estimating the Variance 40
48 Maximum Likelihood Estimation 41
48.1 The Likelihood Function 41
X Hypothesis Testing 43
49 Statiscal Hypotheses: General Concepts 43
49.1 The Null and Alternative Hypotheses 43
50 Testing a Statistical Hypothesis 44
50.1 One- and Two-Tailed Tests 47
$51 P$-Values 47
51.1 P-Values vs Classic Hypothesis Testing 47
52 Goodness-of-Fit Test 48
XI Linear Regression and Correlation 50
53 Function Approximation 50
54 Linear Regression with Least Squares 50
55 Properties of the Least Squares Estimators 52
55.1 Estimating the Error 52

Probability

SECtion 1

Introduction

- probability comes from:
- things we can't model well
- good models but limited measurements
- uncertainty is unavoidable, but probability helps describe uncertainty

SECTION 2

Sample Space

Definition 1
Sample Space: the set of all possible outcomes, S

- e.g. for 1 coin flip: $S=H, T$
- each outcome in a sample space is called an element or member

Section 3

Events

Definition 2
Event: a subset of sample space S

- e.g. for a die: each element $\{1,2,3, \ldots\}$ is an event, rolling even or rolling odd are events

Definition 3
The complement of an event A with respect to S : everything in S that isn't in A

- denoted by A^{\prime}
- e.g. for a die: $\{1,2\}$ is a complement of $\{3,4,5,6\}$

Definition 4
The intersection of two events A and B : everything in A and B

- denoted by $A \cap B$
- A and B are mutually exclusive if $A \cap B=\emptyset$ (empty set)

Definition 5
The union of two events A and B : everything in A or B

- denoted by $A \cup B$
- $A \cup A^{\prime}=S$

Section 4

Counting

Theorem 1 Generalized Multiplication Rule: if an operation can be performed in n_{1} ways, and if for each of these a second operation can be performed in n_{2} ways, and for each of these \ldots, then the sequence of k operations can be performed in $n_{1} n_{2} \ldots n_{k}$ ways

- e.g. Menu options: 3 appetizers, 4 mains, 2 deserts
- then there are $3 \cdot 4 \cdot 2=24$ options

Definition 6
Permutation: an arrangement of all or part of a set of objects

- we can derive formula for permutations using the multiplication rule:
- for example: permutations of three letters a, b, and c
- there are 3 choices for first position, and no matter what you choose, there will be 2 choices for the second, and 1 choice for the third
- therefore: $(3)(2)(1)=6$ permutations

Theorem 2 The number of permutations of n objects is $n!$.

Theorem 3 The number of permutations of r out of n items is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Theorem 4
The number of permutations of n objects arranged in a circle is $(n-1)!$.

Subsection 4.1

Permutations with Identical Items

Theorem 5
Given m kinds of items, and each kind of item has n_{k} of them $(k=1,2, \ldots, m)$, then the number of distinct permuations is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{m}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{m}!}
$$

Subsection 4.2

Partitions

- partitions divide a set into subsets
- often we want to find the number of possible ways to split a set up into partitions, where in each partition, the order doesn't matter

Theorem 6 Given m partitions of size $n_{1}, n_{2}, \ldots, n_{m}$, the number of ways of partitioning the set
is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{m}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{m}!} .
$$

- note that this is the same formula as the number of permutations with identical items
- this is because once we put a group of items in a partition, their order doesn't matter anymore and they are essentially identical elements to us

Subsection 4.3

Combinations

- combinations are ways of selecting objects without regard to order
- combinations are like permutations except you don't care about order
- you can think of a size r combination as paritioning a set into 2 cells, where one cell has size r and the other is the rest of the set
- how many ways can you put items from a set into a size r partition
- using the partition formula:

Theorem 7
The number of size r combinations of n distinct objects is

$$
\binom{n}{r, n-r}=\frac{n!}{r!(n-r)!},
$$

or more commonly written as " n choose r ":

$$
\binom{n}{r} .
$$

SECTION 5

Probability of an Event

- a measure of the likelihood of an event happening - a value ranging from 0 to 1

Definition 7 The probability of an event A in sample space S is the sum of the weights of all sample points in A.

$$
0 \leq P(A) \leq 1, \quad P(\emptyset)=0, \quad \text { and } \quad P(S)=1
$$

- if $A_{1}, A_{2}, A_{3}, \ldots$ is a sequence of mutually exclusive events, then

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\ldots
$$

Subsection 5.1

Additive Rules

Theorem 8
Additive Rule (applies to unions of events): if A and B are two events, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- if A and B are mutually exclusive, then $A \cap B=\emptyset$ and

$$
P(A \cup B)=P(A)+P(B)
$$

- if A and A^{\prime} are complementary events, then

$$
P(A)+P\left(A^{\prime}\right)=1
$$

Figure 1. Additive rule of probability

Theorem 9 For three events A, B, and C,

$$
\begin{aligned}
P(A \cup B \cup C) & =P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

Section 6

Conditional Probability, Independence, and the Product Rule

Subsection 6.1

Conditional Probability

- conditional probability is the probability of an event B occurring when it is known that some event A has occurred

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \quad \text { provided } \quad P(A)>0
$$

- the probability of B happening, given A, is equal to the probability of their intersection divided by the probability of A happening

Subsection 6.2

Independence

Definition 9

A and B are independent if and only if

$$
P(A \mid B)=P(A) \quad \text { or } \quad P(B \mid A)=P(B)
$$

- probability of A or B happening doesn't depend on if the other event happened
- otherwise, A and B are dependent
- the condition $P(B \mid A)=P(B)$ implies that $P(A \mid B)=P(A)$
- note that independence \neq mutually exclusive
- e.g. head and tails are mutually exclusive but not independent $(P(H \mid T)=0)$

Subsection 6.3

Product Rule

- allows us to calculate the probability that two events will both occur

Theorem 10
Product Rule: If in an experiment the events A and B can both occur, then

$$
P(A \cap B)=P(A) P(B \mid A), \quad \text { provided } \quad P(A)>0
$$

Theorem 11
Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

- the probability that two independent events will both occur is equal to the product of their individual probabilities
- notice how this is a special case of the product rule $P(A \cap B)=P(A) P(B \mid A)$ where $P(B \mid A)=P(B)$ since A and B are independent

Product Rule for two or more events: if the events $A_{1}, A_{2}, \ldots, A_{k}$ can occur, then
refer to the textbook theorem 2.12 lol .
If the events $A_{1}, A_{2}, \ldots, A_{k}$ are independent, then

$$
P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{k}\right)
$$

Section 7

Bayes' Rule

Subsection 7.1

Total Probability

- addresses the problem of finding the total probability of something happening, when you know its conditional probabilities
- for example, what is the probability of a product being defective if it was produced by machines that each have a probability of creating defective products

Theorem 13
If the events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S such that $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots k$, then for any event A of S,

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i} \cap A\right)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

Figure 2. Partitioning the sample space S. The probability of A is the sum of the probabilities of the intersections between the partitions and A.

Subsection 7.2

Bayes' Rule

- addresses the problem of finding conditional probability, $P\left(B_{i} \mid A\right)$
- for example, what is the probability that a product was created by a certain machine, given that the product is defective
- recall formula for conditional probability, and substitute in the formula for total probability in the denominator:

Bayes' Rule: If the events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S such that $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A in S such that $P(A) \neq 0$, then the probability of a cell B_{n} in the partition, given A, is given by

$$
P\left(B_{n} \mid A\right)=\frac{P\left(B_{n} \cap A\right)}{\sum_{i=1}^{k} P\left(B_{i} \cap A\right)}=\frac{P\left(B_{n}\right) P\left(A \mid B_{n}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

- recall the product rule, rearranging it, we get:

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)} \quad \text { and } \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- noting that $P(B \cap A)=P(A \cap B)$, we can rearrange and equate the above
equations:

$$
\begin{aligned}
P(B \mid A) P(A) & =P(A \mid B) P(B) \\
& \text { or } \\
\frac{P(B \mid A)}{P(B)} & =\frac{P(A \mid B)}{P(A)}
\end{aligned}
$$

Random Variables and Proba-

 bility DistributionsSECtion 8
Concept of a Random Variable

Random variable (RV): a function that maps each element in the sample space to a real number

- we use capital letters, say X, to denote a random variable and use its corresponding small letter, x, for one of its values it can take on

Definition 11
Discrete RV: X takes on a finite or countable number of values
Continuous RV: X takes on values in an interval of \mathbb{R}

SECtion 9

Discrete Probability Distributions

The set of ordered pairs $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ is a probability function, probability mass function (PMF), or probability distribution of the discrete RV X if, for each possible outcome x,

1. $f(x) \geq 0$
2. $\sum_{x} f(x)=1$
3. $\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{f}(\mathrm{x})$

The cumulative distribution function (CDF) $F(x)$ of a discrete random variable X with PMF $f(x)$ is the probability of X being less than or equal to x :

$$
F(x)=P(X \leq x)=\sum_{t \leq x} f(t), \quad \text { for }-\infty<x<\infty
$$

Section 10

Continuous Probability Distributions

- for a continuous random variable, the probability of it assuming a specific value exactly is 0 since there are infinite values
- but the probability of X assuming a value in an interval is nonzero

Definition 14

The cumulative distribution function $F(x)$ of a continuous random variable X with $\operatorname{PDF} f(x)$ is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t, \quad \text { for } \quad-\infty<x<\infty
$$

SECTION 11

Joint Probability Distributions

- previous section only focused on 1D sample spaces
- when dealing with the simultaneous occurrence of two RVs:

The function $f(x, y)$ is a joint probability distribution or joint PMF of the discrete random variables X and Y if

1. $f(x, y) \geq 0$ for all (x, y)
2. $\sum_{x} \sum_{y} f(x, y)=1$
3. $P(X=x, Y=y)=f(x, y)$

For any region A in the $x y$ plane, $P[(X, Y) \in A]=\sum \sum_{A} f(x, y)$.

The function $f(x, y)$ is a joint density function of the continuous random variables X and Y if

1. $f(x, y) \geq 0$, for all (x, y)
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$
3. $P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y$, for any region A in the $x y$ plane

Subsection 11.1

Marginal Distributions

- what if we know the joint distribution of two RVs but only care about one (want to obtain the probability distribution of an individual RV)
- simply integrate/add along the variable to eliminate
- for the discrete case:

$$
g(x)=\sum_{y} f(x, y) \quad \text { and } \quad h(y)=\sum_{x} f(x, y)
$$

- for the continuous case:

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y \quad \text { and } \quad h(y)=\int_{-\infty}^{\infty} f(x, y) d x
$$

- idea: marginal distribution is just the 'weighted average' of $f(x, y)$ over all possibilities of x or y

SUBSECTION 11.2

Conditional Distributions

- recall conditional probability
- conditional distributions take very similar form

Definition 19

Let X and Y be two RVs. The conditional distribution of RVs (discrete or continuous) is

$$
\begin{aligned}
& f(y \mid x)=\frac{f(x, y)}{g(x)} \\
& f(x \mid y)=\frac{f(x, y)}{h(y)} .
\end{aligned}
$$

- if we want to find the probability that X falls between a and b, given $Y=y$:

$$
\begin{aligned}
& P(a<X<b \mid Y=y)=\sum_{a<x<b} f(x \mid y) \\
& P(a<X<b \mid Y=y)=\int_{a}^{b} f(x \mid y) d x
\end{aligned}
$$

Subsection 11.3

Statistical Independence

Let X and Y be RVs with joint distribution $f(x, y)$ and marginal distributions $g(x)$ and $h(y) . X$ and Y are statistically independent if and only if

$$
f(x, y)=g(x) h(y)
$$

for all (x, y) within their range.

- same idea applies for joint probability distributions of more than 2 RVs - their joint probability distributions are simply the product of the marginal distributions if the RVs are statistically independent

Mathematical Expectation

Mean of a Random Variable

- essentially calculating what value of x is most likely to occur based on the probability distribution $f(x)$

Definition 21

Let X be an RV with probability distribution $f(x)$. The mean, or expected value of X is

- for discrete case:

$$
\mu=E(X)=\sum_{x} x f(x)
$$

- for continuous case:

$$
\mu=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- notice: we mutliply the value of x with its own probability so that values of x with higher probability have a greater influence on what the expected value is

Let X be an RV with probability distribution $f(x)$. We define a new RV as a function of $X, g(X)$. The expectation of the RV $g(X)$ is

- for discrete case:

$$
\mu_{g(X)}=E[g(X)]=\sum_{x} g(x) f(x)
$$

- for continuous case:

$$
\mu_{g(X)}=E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Let X and Y be RVs with joint probability distribution $f(x, y)$. The expectation of the $\mathrm{RV} g(X, Y)$ is

- for discrete case:

$$
\mu_{g(X, Y)}=E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) f(x, y)
$$

- for continuous case:

$$
\mu_{g(X, Y)}=E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

- generalization of the calculation of mathematical expectations of functions of more than 2 RVs is straightforward

SECTION 13

Variance and Covariance of Random Variables

Subsection 13.1

Variance

- measures how spread out a distribution is - the variability of an RV

Definition 24

Let X be an RV with probability distribution $f(x)$ and mean $\mu=E(X)$. The variance of X is

- if X is discrete:

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} f(x) .
$$

- if X is continuous:

$$
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

The positive square root of the variance, σ, is called the standard deviation of X.

- sometimes, variance is written as $\operatorname{var}(X)$
- the $x-\mu$ centers the distribution on the y-axis
- squaring it allows for points at a greater distance from the mean μ to have a larger contribution, therefore measuring how spread out the distribution is

Theorem 15 The variance of an $\mathrm{RV} X$ is

$$
\sigma^{2}=E\left(X^{2}\right)-\mu^{2}
$$

- proof is in section 4.2 of textbook

Subsection 13.2

Covariance

- measures the joint variability of two variables - the direction of the relationship between two variables
- if large values of both variables occur together, covariance is positive
- if large values of one correspond to small values of the other RV, covariance is negative

Let X and Y be RVs with joint probability distribution $f(x, y)$. The covariance of X and Y is

- if X and Y are discrete:

$$
\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y)
$$

- if X and Y are continuous:

$$
\sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y
$$

- also written as $\operatorname{cov}(X, Y)$

Theorem 16
The covariance of two random variables X and Y with means μ_{X} and μ_{Y} is given by

$$
\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y}
$$

Subsection 13.3

Correlation Coefficient

- the sign of covariance provides information about the nature of the relationship between two variables, but the magnitude does not indicated anything about the strength of the relationship since covariance isn't scale-free
- its magnitude depends on the units used to measure X and Y
- the scale-free version of covariance is called the correlation coefficient:

Let X and Y be RVs with covariance $\sigma X Y$ and standard deviations σ_{X} and σ_{Y}. The correlation coefficient of X and Y is

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- like covariance, but normalized
- magnitude tells us strength of relationship
- $-1 \leq \rho_{X Y} \leq 1$
- 'uncorrelated' if $\rho_{X Y}=0$
- since that would mean $\sigma_{X Y}=0$

SECtion 14
Means and Variances of Linear Combinations of Random Variables

Subsection 14.1

Means of LCs of RVs

- expectation is linear

Theorem 17 If a and b are constants, then

$$
E(a X+b)=a E(X)+b
$$

Theorem 18
The expectation of the sum or difference of two or more functions of an RV is the sum or difference of the expectations of the functions, i.e.

$$
E[g(X) \pm h(X)]=E[g(X)] \pm E[h(X)]
$$

Subsection 14.2

Variances of LCs of RVs

Theorem 19 Let X and Y be two independent RVs. Then

$$
E(X Y)=E(X) E(Y)
$$

- recall formula for covariance:

$$
\sigma_{X Y}=E(X Y)-E(X) E(Y)
$$

- if X and Y are independent, then $E(X Y)=E(X) E(Y)$, so:

Theorem 20 Let X and Y be two independent RVs. Then $\sigma_{X Y}=0$

- i.e. independence implies uncorrelated
- but uncorrelated does not imply independence
- independece is a stronger property than uncorrelated

Theorem 21 The variance of $a X+b Y+c$, where a, b, and c are constants, is

$$
\sigma_{a X+b Y+c}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \sigma_{X Y}
$$

- notice that c has no effect on the variance - the variance is unchanged if a constant is added or subtracted from an RV
- it simply shifts the values of the RV left or right, it doesn't change the variability
- also notice that if X and Y are independent, then the last term is 0
- multiplying an RV by a constant scales the variance by the square of the constant, i.e.

Theorem 22 The variance of $a X$, where a is a constant, is $\sigma_{a X}^{2}=a^{2} \sigma_{X}^{2}$

Common Discrete Probability Distributions

Section 15

Uniform Distribution

- every element in S has the same probability (e.g. coin flip)
- if $S=1,2, \ldots, n$, then $f(k)=\frac{1}{n}$ for $k \in S$

Section 16

Binomial Distribution

Binomial Distribution: the probability of x successes in n trials for a binomial experiment:

$$
b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} .
$$

The mean and variance of the binomial distribution are

$$
\mu=n p \quad \text { and } \quad \sigma^{2}=n p(1-p)
$$

Section 17

Multinomial Distribution

- like binomial but each trial has more than 2 possibilities, $E_{1}, E_{2}, \ldots, E_{k}$, where k is the number of possibilities a trial can take on

Multinomial Distribution: the probability of E_{1} happening x_{1} times, E_{2} happening x_{2} times, \ldots, E_{k} happening x_{k} times, where $x_{1}+x_{2}+\ldots+x_{k}=n$:

$$
f\left(x_{1}, x_{2}, \ldots, x_{k} ; p_{1}, p_{2}, \ldots, p_{k}, n\right)=\binom{n}{x_{1}, x_{2}, \ldots, x_{k}} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k}^{x_{k}}
$$

Section 18

Hypergeometric Distribution

select n times (with replacement)

$$
h(x ; N, n, K)=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}, \quad(n-x \leq N-K)
$$

- mean and variance:

$$
\mu=\frac{n K}{N} \quad \text { and } \quad \sigma^{2}=\frac{N-n}{N-1} \cdot n \cdot \frac{K}{N}\left(1-\frac{K}{N}\right)
$$

Section 19

Negative Binomial Distribution

Negative Binomial Distribution: probability of the k-th success occuring on the x-th trial, where the probability of a success is p

$$
b^{*}(x ; k, p)=\binom{x-1}{k-1} p^{k}(1-p)^{x-k}
$$

- note:

$$
b^{*}(x ; k, p)=p b(k-1 ; x-1, p)
$$

Subsection 19.1

Geometric Distribution

Geometric Distribution: a special case of the negative binomial distribution, where $k=1$, i.e. probability of the first success happening on the $x^{t h}$ trial

$$
g(x ; p)=b^{*}(x ; 1, p)=p(1-p)^{x-1}
$$

- mean and variance:

$$
\mu=\frac{1}{p} \quad \text { and } \quad \sigma^{2}=\frac{1-p}{p^{2}} .
$$

Poisson Distribution

- like binomial except number of trials is continuous over some interval $(n \rightarrow \infty)$
- properties of a Poisson Process:

1. the number of outcomes in one time interval is independent of the number that occur in any other interval - the Poisson process has no memory
2. the probability that a single outcome will occur during an interval is proportional to the length of the interval and doesn't depend on the number of outcomes occurring outside this interval

Definition 32 Poisson Distribution: the probability distribution of a Poisson random variable X, representing the number of outcomes occurring in a given time interval or specified region denoted by t, is

$$
p(x ; \lambda t)=\frac{e^{-\lambda t}(\lambda t)^{x}}{x!}, \quad x=0,1, \ldots
$$

where λ is the average number of outcomes per unit interval

- mean and variance are both given by

$$
\mu=\sigma^{2}=\lambda t
$$

- note: the binomial distribution $b(x ; n, p)$ becomes the Poisson distribution $p(x ; \mu)$ as the sample size $n \rightarrow \infty$

Continuous Probability Distributions

SEction 21

Continuous Uniform Distribution

Continuous Uniform Distribution:

$$
f(x ; A, B)=\left\{\begin{array}{ll}
\frac{1}{B-A}, & A \leq x \leq B \\
0, & \text { elsewhere }
\end{array} .\right.
$$

- the mean and variance are given by

$$
\mu=\frac{A+B}{2} \quad \text { and } \quad \sigma^{2}=\frac{(B-A)^{2}}{12} .
$$

Section 22

Normal Distribution

- the most important continuous probability distribution in the entire field of statistics
- also known as the Gaussian distribution
- a continuous random variable X have the bell-shaped distribution of the normal curve is called a normal random variable

Normal/Gaussian Distribution:

$$
n(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- the mode occurs at the maximum, when $x=\mu$
- it is symmetric about $x=\mu$
- points of inflection occur at $x=\mu \pm \sigma$

Subsection 22.1

Standard Normal Distribution

- calculating areas under the normal curve is important to obtain probabilities, but it's rather dumb to make tables of values for every single value of μ and σ^{2}
- instead, we are able to transform all observations of any normal RV X into a new set of observations of a normal RV Z with mean 0 and variance 1:

$$
Z=\frac{X-\mu}{\sigma}
$$

Definition 35
Standard Normal Distribution: special case of the normal distribution where $\mu=0$ and $\sigma^{2}=1$

Section 23

Normal Approximation to the Binomial Distribution

Theorem 24 if X is a binomial RV with $\mu=n p$ and $\sigma^{2}=n p(1-p)$, then the limiting form of the distribution of

$$
Z=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

as $n \rightarrow \infty$ is the standard normal distribution $n(z ; 0,1)$

Section 24

Gamma and Exponential Distributions

- the Gamma function is given by

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad \text { for } \alpha>0
$$

- properties of the Gamma function:

1. $\Gamma(n)=(n-1)(n-2) \ldots(1) \Gamma(1)$, for a positive integer n
2. $\Gamma(n)=(n-1)$! for a positive integer n
3. $\Gamma(1)=1$
4. $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Definition 36

Gamma Distribution:

$$
f(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

where $\alpha, \beta>0$

- mean and variance:

$$
\mu=\alpha \beta \quad \text { and } \quad \sigma^{2}=\alpha \beta^{2}
$$

Exponential Distribution: special case of Gamma distribution where $\alpha=1$

$$
f(x ; \beta)= \begin{cases}\frac{1}{\beta} e^{-x / \beta}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

where $\beta>0$

- mean and variance:

$$
\mu=\beta \quad \text { and } \quad \sigma^{2}=\beta^{2}
$$

Section 25

Chi-Squared Distribution

Chi-Square Distribution: special case of Gamma distribution where $\alpha=v / 2$, $\beta=2$, and v is a positive integer and is the only parameter, called the degrees of freedom

$$
f(x ; v)= \begin{cases}\frac{1}{2^{v / 2} \Gamma(v / 2)} x^{v / 2-1} e^{-x / 2}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

- mean and variance:

$$
\mu=v \quad \text { and } \quad \sigma^{2}=2 v
$$

Section 26

Weibull Distribution

Weibull Distribution:

$$
f(x ; \alpha, \beta)= \begin{cases}\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}, & x>0 \\ 0, & \text { elsewhere }\end{cases}
$$

where $\alpha, \beta>0$

- its cumulative function is given by

$$
F(x)=1-e^{-\alpha x^{\beta}}
$$

Functions of Random Variables

Transformations of Variables

Theorem 25
Suppose X is a discrete RV with probability distribution $f(x)$. Let $Y=u(X)$ define a one-to-one transformation between values of X and Y so that we can also write $x=w(y)$. Then the probability distribution of Y is

$$
g(y)=f(w(y))
$$

- for the case of joint probability distributions $f\left(x_{1}, x_{2}\right)$, the probability distribution of Y is

$$
g\left(y_{1}, y_{2}\right)=f\left[w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right] .
$$

Theorem 26 For the case where the RV is continuous, the probability distribution of Y is

$$
g(y)=f(w(y))|J|
$$

where $J=w^{\prime}(y)$ is the Jacobian of the transformation.

- for joint probability distributions:

$$
g\left(x_{1}, x_{2}\right)=f\left[w_{1}\left(y_{1}, y_{2}\right), w_{2}\left(y_{1}, y_{2}\right)\right] .
$$

where the Jacobian is the determinant of the Jacobian matrix

Section 28

Moments and Moment-Generating Functions

The r th moment about the origin of the RV X is given by

$$
\mu_{r}^{\prime}=E\left(X^{r}\right)=\int_{-\infty}^{\infty} x^{r} f(x) d x
$$

- we can write mean and variance of a random variable in terms of moments:

$$
\mu=\mu_{1}^{\prime} \quad \text { and } \quad \sigma^{2}=\mu_{2}^{\prime}-\mu^{2}
$$

Moment-generating function of the RV X : alternative procedure for determining moments

$$
M_{X}(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

- moment-generating functions will exist only if the integral in the above definition converges
- if it exists, a moment-generating function of RV X can be used to generate all the moments of that variable using the below method:

Theorem 27

Let X be a random variable with moment-generating function $M_{X}(t)$, then

$$
\left.\frac{d^{r} M_{X}(t)}{d t^{r}}\right|_{t=0}=\mu_{r}^{\prime}
$$

Theorem 28 Uniqueness Theorem: Let X and Y be two RVs with moment-generating functions $M_{X}(t)$ and $M_{Y}(t)$. If $M_{X}(t)=M_{Y}(t)$ for all values of t, then X and Y have the same probability distribution.

Theorem 29

1. $M_{X+a}(t)=e^{a t} M_{X}(t)$
2. $M_{a X}(t)=M_{X}(a t)$

Theorem 30
If X_{1}, \ldots, X_{n} are independent RVs with moment-generating functions, and $Y=X_{1}+$ $\ldots+X_{n}$ then

$$
M_{Y}(t)=M_{X_{1}}(t) M_{X_{2}}(t) \ldots M_{X_{n}}(t)
$$

SUBSECTION 28.1

Linear Combinations of Random Variables

Theorem 31
If $X_{1}, X_{2}, \ldots, X_{n}$ are independent RVs having normal distributions with means $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ and variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$, then the RV

$$
Y=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

has a normal distribution with mean

$$
\mu_{Y}=a_{1} \mu_{1}+a_{2} \mu_{2}+\ldots+a_{n} \mu_{n}
$$

and variance

$$
\sigma_{Y}^{2}=a_{1}^{2} \sigma_{1}^{2}+a_{2}^{2} \sigma_{2}^{2}+\ldots+a_{n}^{2} \sigma_{n}^{2}
$$

Sampling

Why sample?

- can't measure entire population
- random sampling ensures sample reflects population

Section 29

Measures of Location: Sample Mean and Median

- Given sample data: x_{1}, \ldots, x_{n}

Sample Mean: the numerical average

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Sample Median: given that $x_{1}, x_{2}, \ldots, x_{n}$ are arranged in increasing order of magnitude,

$$
x_{m}=\left\{\begin{array}{ll}
x_{\frac{n+1}{2}} & \text { if } n \text { odd } \\
\frac{1}{2}\left(x_{\frac{n}{2}}+x_{\frac{n}{2}+1}\right) & \text { if } n \text { even }
\end{array} .\right.
$$

- purpose of the sample median is to reflect the central tendency of the sample in a way that is uninfluenced by extreme values or outliers (unlike the mean)

Mode: most frequently occurring value

- e.g. $1,1,1,1,1,8$
- mode $=1$

Section 30

Measures of Variability

Subsection 30.1

Sample Range and Sample Standard Deviation

- sample range is given by $X_{\max }-X_{\min }$

Sample Variance, denoted by s^{2}, is given by

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

The sample standard deviation, denoted by s, is the positive square root of s^{2} :

$$
s=\sqrt{s^{2}}
$$

- the quantity $n-1$ is often called the degrees of freedom associated with the variance
- this is because in general, $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=0$, so the last value in the sample can be determined only using the first $n-1$ values
- this means the computation of sample variance doesn't involve all n independent squared deviations from the mean
- there are only $n-1$ "pieces of information" that produce s^{2}
- therefore: there are $n-1$ degrees of freedom instead of n when computing sample variance

Section 31

Visualization

Subsection 31.1

Histogram

- plots the frequency of each outcome
- also can plot relative frequency:
- dividing each class frequency by the total number of observations, we obtain the relative frequency of each class interval
- we can plot relative frequency in a histogram

Figure 3. Example of relative frequency histogram.

Subsection 31.2

Box-and-Whisker Plot

- displays the center of location, variability, and degree of asymmetry
- encloses the interquartile range of the data in a box which also displays the median within
- essentially encloses the middle 50% of the data
- the extremes of the interquartile range are the 75 th percentile (upper quartile) and 25 th percentile (lower quartile)
- "whiskers" extend from the sides of the box showing extreme observations
- outliers may be plotted as points as well

Figure 4. Example of box and whisker plot.

Sampling Distributions

A population consists of all possible observations.

A sample is a subset of a population.

- we work with samples because it is impractical to observe whole population

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent random variables, each having the same probability distribution $f(x)$. Define $X_{1}, X_{2}, \ldots, X_{n}$ to be a random sample of size n from the population $f(x)$ and write its joint probability as

$$
f\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right)
$$

Section 33

Statistics and Sampling Distributions

Statistic: Any function of the random variables constituting a random sample (e.g. mean, median, variance, etc.).

- a sample is biased if it consistently over- or underestimates a statistic of interest

Sampling Distribution: The probability distribution of a statistic.

- the sampling distribution of a statistic depends on the distribution of the population, size of samples, and method of choosing samples
- it is very important to notice and understand (for pretty much the rest of the course) that the mean and variance of a statistic is not the same as the mean and variance for the population

Section 34

Sampling Distribution of Means and the Central Limit Theorem

- the sampling distribution of \bar{X} with sample size n is the distribution that results when an experiment is conducted over and over (always with sample size n) and many values of \bar{X} result
- the sampling distribution describes the variability of sample averages around the population mean μ
- if X_{1}, \ldots, X_{n} are normal, all with mean μ and variance σ^{2}, then \bar{X} has a normal distribution with mean

$$
\mu_{\bar{X}}=\frac{1}{n}\left(\mu_{1}+\ldots+\mu_{n}\right)=\mu
$$

and variance

$$
\sigma_{\bar{X}}^{2}=\frac{1}{n^{2}}\left(\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}\right)=\frac{\sigma^{2}}{n}
$$

- notice that the mean and variance of the statistic (denoted above as $\mu_{\bar{X}}, \sigma_{\bar{X}}^{2}$) is not the same as the mean and variance for the population (denoted above as μ, σ^{2})

Subsection 34.1

The Central Limit Theorem (CLT)

Central Limit Theorem: Suppose \bar{X} is the mean of a random sample of size n taken from a population with mean μ and finite variance σ^{2}. Define an RV

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

As $n \rightarrow \infty$, the distribution of Z converges to the standard normal distribution, $n(z ; 0,1)$.

Figure 5. Illustration of the Central Limit Theorem. Note that it shows how the mean of \bar{X} remains μ for any sample size and the variance gets smaller as n increases.

- CLT is widely applicable - works with any distribution as long as observations have same probability distributions with finite variance
- variance of mean shrinks with \sqrt{n} - average becomes more accurate with a bigger sample

Subsection 34.2

Sampling Distribution of the Difference Between Two Means

If independent samples of size n_{1} and n_{2} are drawn at random from two populations with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}, then the sampling distribution of the differences of means, $\bar{X}_{1}-\bar{X}_{2}$, is approximately normally distributed with mean and variance given by

$$
\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2} \quad \text { and } \quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} .
$$

Therefore,

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2} / n_{1}\right)+\left(\sigma_{2}^{2} / n_{2}\right)}}
$$

is approximately a standard normal variable.

Theorem 34 If S^{2} is the variance of a random sample of size n taken from a normal population having the variance σ^{2}, then the statistic

$$
\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)}{\sigma^{2}}
$$

has a chi-squared distribution with $\nu=n-1$.

Figure 6. The chi-squared disribution. We let χ_{α}^{2} represent the χ^{2} value above which we find an area of α.

Subsection 35.1

Degrees of Freedom as a Measure of Sample Information

- recall that

$$
\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}
$$

has a chi-squared distribution with n degrees of freedom while the RV

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)}{\sigma^{2}}
$$

has a chi-squared distribution with $n-1$ degrees of freedom

- this is because when μ is not known, i.e. when we are considering the distribution of

$$
\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)}{\sigma^{2}}
$$

there is 1 less degree of freedom since a degree of freedom is lost in the estimation of μ (when μ is replaced by \bar{x})

- when μ is known, there are n degrees of freedom, or independent pieces of information, in a random sample from a normal distribution
- when data (values in the sample) are used to compute the mean, there is 1 less DOF, 1 less piece of information, used to estimate σ^{2}

SECtion 36

t-Distribution

- CLT is for making inferences about the mean μ assuming variance σ^{2} is known
- t-distribution is for when σ^{2} is not known
- consider the statistic

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

where

$$
S=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- if sample size is large $(n \geq 30), S$ is close to σ, and T follows a normal distribution
- if sample size is smaller, the values of S^{2} fluctuate considerably and the disribution of T deviates much more from the standard normal distribution
- the t-distribution is much more accurate in this case

t-distribution:

$$
h(t)=\frac{\Gamma[(v+1) / 2]}{\Gamma(v / 2) \sqrt{\pi v}}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}, \quad-\infty<t<\infty .
$$

- if X_{1}, \ldots, X_{n} are independent RVs that are all normal with mean μ and standard deviation σ, and

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

then the RV $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has a t-distribution with $v=n-1$ degrees of freedom

- intuition behind the t-distribution:
- if we knew σ, we'd have a normal distribution
- instead we only have estimate S^{2} - less information, so we expect more variability
- variance of T depends on the sample size n and is always greater than 1
- in the limit that sample size $n \rightarrow \infty$ and subsequently $v \rightarrow \infty$, the t-distribution becomes the standard normal distribution

Figure 7. Illustration of the t-distribution. We let t_{α} represent the t-value above which we find an area equal to α.

SECtion 37

\boldsymbol{F}-Distribution

- define a statistic F to be the ratio of two independent chi-squared $\mathrm{RVs} U$ and V, each divided by its number of degrees of freedom, v_{1} and v_{2} :

$$
F=\frac{U / v_{1}}{V / v_{2}}
$$

\boldsymbol{F}-distribution: sampling distribution of F is given by

$$
h(f)= \begin{cases}\frac{\Gamma\left[\left(v_{1}+v_{2}\right) / 2\right]\left(v_{1} / v_{2}\right)^{v_{1} / 2}}{\Gamma\left(v_{1} / 2\right) \Gamma\left(v_{2} / 2\right)} \frac{f^{\left(v_{1} / 2\right)-1}}{\left(1+v_{1} f / v_{2}\right)^{\left(v_{1}+v_{2}\right) / 2}}, & f>0 \\ 0, & f \leq 0\end{cases}
$$

Figure 8. Typical F-distributions. We let f_{α} be the f-value above which we find an area equal to α.

SUBSECTION 37.1

The \boldsymbol{F}-Distribution with Two Sample Variances

Theorem 35 If S_{1}^{2} and S_{2}^{2} are the variances of independent random samples of size n_{1} and n_{2} taken from normal populations with variances σ_{1}^{2} and σ_{2}^{2}, then

$$
F=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{\sigma_{2}^{2} S_{1}^{2}}{\sigma_{1}^{2} S_{2}^{2}}
$$

has an F-distribution with $v_{1}=n_{1}-1$ and $v_{2}=n_{2}-1$ degrees of freedom

Section 38

Quantile and Probability Plots

- quantile plots depict (in sample form) the cumulative distribution function

A quantile of a sample, denoted by $q(f)$, is a value for which a specified fraction of f of the data values is less than or equal to $q(f)$.

- a quantile plot plots $q(f)$ versus f, where $q(f)$ is on the y -axis
- to sketch:
- rank sample in increasing order, x_{1}, \ldots, x_{n}
- for each data point $i=1, \ldots, n$, plot

$$
\left(\frac{i-3 / 8}{n+1 / 4}, x_{i}\right)
$$

Figure 9. Example of a quantile plot.

- notice in Figure 9:
- $q(0.5)$ is the sample median
- lower quartile (25 th percentile) is $q(0.25)$
- upper quartile (75 th percentile) is $q(0.75$)
- flat areas indicate clusters of data
- steep areas indicate sparsity of data

Subsection 38.1

Normal Quantile-Quantile Plot

- we often want to know how close data is to a normal distribution since we understand normal distributions very well and many tools (t and F distributions) assume normality
- the expression for the quantile of a normal distribution is very complicated but can be approximated as

$$
q_{\mu, \sigma}(f)=\mu+\sigma\left(4.91\left(f^{0.14}-(1-f)^{0.14}\right)\right)
$$

Definition 54 Normal quantile-quantile plot: a plot of $y_{(i)}$ (ordered observations) against $q_{0,1}\left(f_{i}\right)$, where $f_{i}=\frac{i-3 / 8}{n+1 / 4}$.

- if the curve is straight, the data is roughly normal

Figure 10. Example of a normal quantile-quantile plot.

Estimation

Section 39

Classical Methods of Estimation

- in general, given a sample, we write
$-\theta$ is the true parameter of the population (like μ)
$-\hat{\theta}$ is the observed value from the sample (like \bar{x})
$-\hat{\Theta}$ is the sample statistic (like \bar{X})

Definition 55

A point estimate of some population parameter θ is a single value $\hat{\theta}$ of a statistic $\hat{\Theta}$.

- for example: the value \bar{x} of the statistic \bar{X}, computed from a sample of size n, is a point estimate of the population parameter μ.

Subsection 39.1
Unbiased Estimator

Definition 56 A statistic $\hat{\Theta}$ is said to be an unbiased estimator of the parameter θ if

$$
\mu_{\hat{\Theta}}=E(\hat{\Theta})=\theta
$$

Subsection 39.2

Variance of a Point Estimator

Definition 57
Considering all possible unbiased estimators of some parameter θ, the one with the smallest variance is called the most efficient estimator of θ.

Figure 11. Sampling distributions of different estimators of θ.

Subsection 39.3

Interval Estimation

- a point estimate $\hat{\theta}$ is rarely exactly θ
- it's useful to have an interval, $\hat{\theta_{L}} \leq \theta \leq \hat{\theta_{U}}$
- $\hat{\theta_{L}}$ and $\hat{\theta_{U}}$ depend on the value of the statistic $\hat{\Theta}$ for a particular sample and also on the sampling distribution of $\hat{\Theta}$
- we want to make a statement of the form

$$
P\left(\hat{\Theta_{L}}<\theta<\hat{\Theta_{U}}\right)=1-\alpha
$$

for $0<\alpha<1$

- the interval $\hat{\theta_{L}} \leq \theta \leq \hat{\theta_{U}}$, computed from the selected sample, is called a 100 (1$\alpha) \%$ confidence interval
- e.g. if $\alpha=0.05$, we have a 95% confidence interval
- the fraction $1-\alpha$ is called the confidence coefficient or degree of confidence
- the endpoints of the interval are called the lower and upper confidence limits

Section 40

Single Sample: Estimating the Mean

- Setup:
- n samples
- observed mean \bar{x}
- known variance σ^{2}
- and the statistic $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
- then

$$
1-\alpha=P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)
$$

where

$$
z_{\beta}=-\Phi^{-1}(\beta)
$$

and

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

If \bar{x} is used as an estimate of μ, we can be $100(1-\alpha) \%$ confident that the error will not exceed $z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$.

- i.e.

$$
\bar{X}_{L}=\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \quad \text { and } \quad \bar{X}_{U}=\bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} .
$$

Theorem 37
If \bar{x} is used as an estimate of μ, we can be $100(1-\alpha) \%$ confident that the error will not exceed a specificed amount e when the sample size is

$$
n=\left(\frac{z_{\alpha / 2} \sigma}{e}\right)^{2}
$$

Subsection 40.1

One-Sided Confidence Intervals

- if we want a confidence interval of the form

$$
1-\alpha=P\left(Z \leq z_{\alpha}\right)
$$

we set

$$
z_{\alpha}=-\Phi^{-1}(\alpha)
$$

- then:

$$
\bar{X}_{U}=\bar{X}+z_{\alpha} \frac{\sigma}{\sqrt{n}}
$$

Subsection 40.2

Estimates with Unknown σ

- samples from normal distribution with unknown σ and any n, we use t-distribution

If \bar{x} and s are the mean and standard deviation of a random sample from a normal population with an unknown variance σ^{2}, a $100(1-\alpha) \%$ confidence interval for μ is

$$
\bar{x}-t_{\alpha / 2} \frac{s}{\sqrt{n}}<\mu<\bar{x}+t_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $t_{\alpha / 2}$ is the t-value with $v=n-1$ degrees of freedom, leaving an area of $\alpha / 2$ to the right.

- one-sided confidence intervals (upper and lower $100(1-\alpha) \%$ confidence intervals) for μ with unknown σ are

$$
\bar{x}+t_{\alpha} \frac{s}{\sqrt{n}} \quad \text { and } \quad \bar{x}-t_{\alpha} \frac{s}{\sqrt{n}}
$$

SECtion 41

Standard Error of a Point Estimate

- given samples X_{1}, \ldots, X_{n} drawn from an unknown distribution with variance σ
- as $n \rightarrow \infty$, the distribution of $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ approaches $n(z ; 0,1)$, the standard normal
- this implies that the standard deviation of Z is around $\frac{\sigma}{n}$

The standard error of an estimator is its standard deviation.

- e.g. the standard of error of \bar{X} is σ / \sqrt{n}
- recall the $100(1-\alpha) \%$ confidence intervals for the mean:

$$
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \quad \text { is written as } \quad \bar{x} \pm z_{\alpha / 2} \text { s.e. }(\bar{x})
$$

where "s.e." is the standard error

- the width of confidence intervals depends on the confidence and the standard error

SEction 42

Prediction Intervals

- so far we've been give samples and \bar{X} and characterized the error/uncertainty of \bar{X}
- we now want to predict the value of a future observation
- suppose we have normal samples X_{1}, \ldots, X_{n}, each with known variance σ and a sample mean of \bar{X}
- \bar{X} is a good point estimate of a single new sample X_{0}
- the error of the point estimate is $X_{0}-\bar{X}$
- due to independence, the variance of the error is $\sigma^{2}+\sigma^{2} / n$
- we define the statistic

$$
Z=\frac{X_{0}-\bar{X}}{\sigma \sqrt{1+1 / n}}
$$

- the distribution of Z is $n(z ; 0,1)$
- therefore we can write the probability statement

$$
1-\alpha=P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)
$$

Theorem 39 For a normal distribution of measurements with unknown mean μ and known variance σ^{2}, a $100(1-\alpha) \%$ prediction interval of a future observation x_{0} is

$$
\bar{x}-z_{\alpha / 2} \sigma \sqrt{1+1 / n}<x_{0}<\bar{x}+z_{\alpha / 2} \sigma \sqrt{1+1 / n}
$$

where $z_{\alpha / 2}$ is the z-value leaving an area of $\alpha / 2$ to the right.

For a normal distribution of measurements with unknown mean μ and unknown variance σ^{2}, a $100(1-\alpha) \%$ prediction interval of a future observation x_{0} is

$$
\bar{x}-t_{\alpha / 2} s \sqrt{1+1 / n}<x_{0}<\bar{x}+t_{\alpha / 2} s \sqrt{1+1 / n}
$$

where $t_{\alpha / 2}$ is the t-value with $v=n-1$ degrees of freedom, leaving an area of $\alpha / 2$ to the right.

- outlier detection: if a new observation is outside the prediction interval, we can declare it an outlier

SECtion 43

Tolerance Limits

- we want to define bounds that cover a fixed proportion of the measurements

For a normal distribution of measurements with unknown mean μ and unknown standard deviation σ, tolerance limits are given by $\bar{x} \pm k s$, where k is determined such that one can assert with $100(1-\gamma) \%$ confidence that the given limits contain at least the proportion of $1-\alpha$ of the measurements.

- values of k given in a provided table

Subsection 43.1

Comparison of Intervals

- Confidence Intervals:
- setup: independent observations of RVs, x_{1}, \ldots, x_{n}, and the mean is $\bar{x}=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- there is a $100(1-\alpha) \%$ chance the true mean μ is in an interval around \bar{x}
- use CLT to compute interval when we know σ for each observation or n is large
- use t-distribution when σ is unknown
- Prediction Intervals:
- same setup
$-100(1-\alpha) \%$ chance the next observation x_{0} is in an interval around \bar{x}
- compute from t or normal distribution
- Tolerance Limits:
- same setup
$-100(1-\gamma) \%$ of measurements will be in an interval $\bar{x} \pm k s$
- compute from table

Section 44

Two Samples: Estimating the Difference between Two Means

- if we have two populations with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}
- then a point estimator of the difference between μ_{1} and μ_{2} is given by the statistic $\bar{X}_{1}-\bar{X}_{2}$
- therefore to obtain a point estimate of $\mu_{1}-\mu_{2}$, we select independent random sample from each population of sizes n_{1} and n_{2} and compute $\bar{x}_{1}-\bar{x}_{2}$ (the difference of the sample means)
- the sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is approximately normally distributed with mean $\mu \bar{X}_{1}-\bar{X}_{2}=\mu_{1}-\mu_{2}$ and standard deviation $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}$
- therefore, we define a standard normal variable

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\sigma_{1}^{2} / n_{1}+\sigma_{2}^{2} / n_{2}}}
$$

- and assert that

$$
P\left(-z_{\alpha / 2}<Z<z_{\alpha / 2}\right)=1-\alpha
$$

Theorem 41

Pooled Estimate of Variance: the sample size-weighted average of S_{1}^{2} and S_{2}^{2}

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2} .
$$

- define the statistic

$$
T=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{1 / n_{1}+1 / n_{2}}} .
$$

- then T has the t-distribution with $v=n_{1}+n_{2}-2$ degrees of freedom
- we have

$$
P\left(-t_{\alpha / 2}<T<t_{\alpha / 2}\right)=1-\alpha .
$$

Confidence Interval for $\mu_{1}-\mu_{2}$, Equal but Unknown Variances: a $100(1-\alpha) \%$ confidence interval for $\mu_{1}-\mu_{2}$ is given by

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right)-t_{\alpha / 2} s_{p} \sqrt{1 / n_{1}+1 / n_{2}}<\mu_{1}-\mu_{2}<\left(\bar{x}_{1}-\bar{x}_{2}\right)+t_{\alpha / 2} s_{p} \sqrt{1 / n_{1}+1 / n_{2}},
$$

where s_{p} is the pooled estimate of the population standard deviation and $t_{\alpha / 2}$ is the t-value with $v=n_{1}+n_{2}-2$ degrees of freedom, leaving an area of $\alpha / 2$ to the right.

44.1.2 Different Variances

- if the variances are unknown and different, we use the statistic

$$
T^{\prime}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{S_{1}^{2} / n_{1}+S_{2}^{2} / n_{2}}} .
$$

- then T^{\prime} approximately has a t-distribution with

$$
v=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\left(s_{1}^{2} / n_{1}\right)^{2} /\left(n_{1}-1\right)+\left(s_{2}^{2} / n_{2}\right)^{2} /\left(n_{2}-1\right)}
$$

degrees of freedom

Section 45

Paired Observations

- previously we considered two sample populations of different sizes and all measurements were independent
- now we consider two sample populations of the same size and pairs of observations have one measurement from each population
- e.g. measuring before and after observations on n people - each "before" measurement is paired with an "after" measurement
- consider paired samples $\left(X_{i}, Y_{i}\right), i=1, \ldots, n$ with statistics $\mu_{X}, \sigma_{X}, \ldots$ (same for Y_{i} 's)
- we are interested in the difference $D_{i}=X_{i}-Y_{i}$
- the variance of the difference:

$$
\operatorname{var}\left(D_{i}\right)=\operatorname{var}\left(X_{i}-Y_{i}\right)=\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \operatorname{cov}\left(X_{i}, Y_{i}\right)
$$

- we expect $\operatorname{cov}\left(X_{i}, Y_{i}\right) \geq 0$, e.g. the before and after weights for one person is likely both above μ_{X} and μ_{Y}
- pairing helps reduce variance
- we can then apply usual CLT or t-distribution confidence intervals to sample D_{i}

SECTION 46

Single Sample: Estimating a Proportion

- a point estimator of the proportion p in a binomial experiment is given by the staistic $\hat{P}=X / n$
- X represents the number of successes in n trials
- the sample proportion $\hat{p}=x / n$ is used as the point estimate of the parameter p
- by CLT, for n sufficiently large, \hat{P} is approximately normally distributed with mean p and variance $\frac{p q}{n}$
- we can use the statistic

$$
Z=\frac{\hat{P}-p}{\sqrt{p q / n}}
$$

Theorem 43 Large Sample Confidence Intervals for p : If \hat{p} is the proportion of successes in a random sample of size n and $\hat{q}=1-\hat{p}$, an approximate $100(1-\alpha) \%$ confidence
interval for the binomial parameter p is given by (method 1)

$$
\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}<p<\hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

or by the limits (method 2)

$$
\frac{\hat{p}+\frac{z_{\alpha / 2}^{2}}{2 n}}{1+\frac{z_{\alpha / 2}^{2}}{n}} \pm \frac{z_{\alpha / 2}}{1+\frac{z_{\alpha / 2}^{2}}{n}} \sqrt{\frac{\hat{p} \hat{q}}{n}+\frac{z_{\alpha / 2}^{2}}{4 n^{2}}} .
$$

Theorem 44

Theorem 45

Theorem 46
If \hat{p} is used as an estimate of p, we can be at least $100(1-\alpha) \%$ confident that the error will not exceed a specified amount e when the sample size is

$$
n=\frac{z_{\alpha / 2}^{2}}{4 e^{2}}
$$

Section 47

Single Sample: Estimating the Variance

- an interval estimate of σ^{2} can be established using the statistic

$$
X^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

Confidence Interval for σ^{2} : If s^{2} is the variance of a random sample of size n from a normal population, a $100(1-\alpha) \%$ confidence interval for σ^{2} is

$$
\frac{(n-1) s^{2}}{\chi_{\alpha / 2}^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{1-\alpha / 2}^{2}}
$$

where $\chi_{\alpha / 2}^{2}$ and $\chi_{1-\alpha / 2}^{2}$ are χ^{2}-values with $v=n-1$ degrees of freedom, leaving areas
of $\alpha / 2$ and $1-\alpha / 2$ to the right.

SECTION 48

Maximum Likelihood Estimation

- so far, we've used intuitive sampling statistics:
$-\bar{X}$ for μ, S^{2} for σ^{2}, \hat{P} for p
- but sometimes it is not obvious what the proper estimator for parameters should be
- e.g. degrees of freedom, α and β in gamma distribution, etc.
- one of the most important approaches to estimation in statistical inference: method of maximum likelihood

Subsection 48.1

The Likelihood Function

- the method of maximum likelihood is that for which the likelihood function is maximized
- main philosophy: the reasonable estimator of a parameter based on sample information is the parameter value that produces the largest probability of obtaining the sample - given a sample, what was the parameter value that most likely produced it
- the likelihood of a sample for a certain value of a parameter is simply the joint distribution of the random variables for a certain value of that parameter, i.e.

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid \theta\right)=f\left(x_{1}, \theta\right) \ldots f\left(x_{n}, \theta\right)
$$

Given independent observations $x_{1}, x_{2}, \ldots, x_{n}$ from a probability density function (continuous case) or probability mass function (discrete case) $f(\boldsymbol{x} ; \theta)$, the maximum likelihood estimator (MLE) $\hat{\theta}$ is that which maximizes the likelihood function

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i}, \theta\right)=f\left(x_{1}, \theta\right) f\left(x_{2}, \theta\right) \ldots f\left(x_{n}, \theta\right)
$$

i.e.

$$
\hat{\theta}=\max _{\theta} L\left(x_{1}, \ldots, x_{n} ; \theta\right)
$$

- it is often convenient to work with the natural log of the likelihood function in finding its maximum
- for example, given an RV X with a gamma distribution and a sample x_{1}, \ldots, x_{n}, how can we estimate α and β ?
- using MLE:

$$
\hat{\alpha}=\max _{\alpha} \prod_{i=1}^{n} f\left(x_{i} ; \alpha, \beta\right)
$$

and same applies to β

Hypothesis Testing

SECtion 49

Statiscal Hypotheses: General Concepts

Statistical Hypothesis: an assertion or conjecture concerning one or more populations (a special case of more general hypotheses)

- rejection of a hypothesis implies that the sample evidence refutes it - there is a extremely small probability of obtaining the sample information observed if the hypothesis was true (therefore it isn't)
- typically, a contention is reached via a rejection of an opposing hypothesis

Subsection 49.1

The Null and Alternative Hypotheses

- null hypothesis: any hypothesis we wish to test, denoted by H_{0}
- the rejection of H_{0} leads to the acceptance of the alternative hypothesis, denoted by H_{1}
- the alternative hypothesis H_{1} usually represents the question to be answered or the theory to be tested (its specification is crucial)
- the null hypothesis nullifies or opposes the alternative hypothesis (they are often logical complements)
- a data analyst arrives at one of two conclusions:

1. reject H_{0} in favour of H_{1} because of sufficient evidence in the data, or
2. fail to reject H_{0} because of insufficient evidence in the data

- for example: innocent until proven guilty:
- H_{0} is innocent, H_{1} is guilty
- if there is strong enough evidence pointing to guilty, we reject H_{0} in favour of H_{1}
- if evidence is weak, we fail to reject H_{0}
- key point: we are not proving innocence, we are failing to reject innocence
- hypothesis testing is using confidence intervals and logic to draw these conclusions

SECtion 50

Testing a Statistical Hypothesis

Type II error: nonrejection of the null hypothesis when it's actually false (false negative)

- level of significance: probability of committing a type II error

$$
\beta=P(\text { type II error }) .
$$

- the probability of committing both types of error can be reduced by increasing the sample size

Example: mean weight of male students in a college

- our null and alternative hypotheses: H_{0} is $\mu=68 \mathrm{~kg}, H_{1}$ is $\mu \neq 68 \mathrm{~kg}$
- we encounter a first issue: $P\left(H_{0}\right)=P(\mu=68)=0$
- then H_{0} will almost always be rejected
- to solve this we use a critical region - a range leading to rejection of H_{0} :
- if $67<\bar{x}<69$, don't reject H_{0}
- critical region is the complement of $[67,69]$

Figure 12. Critical region shown in blue.

- we now calculate the probabilties of committing type I and type II errors
- assume sample size of $n=36$
- we assume that standard deviation of the population of weights is $\sigma=3.6$
- for larger samples, we may substitute s for σ if no other estimate of σ is available
- our decision statistic will be \bar{X}, the most efficient estimator of μ
- from the CLT, we know the sampling distribution of \bar{X} is approximately normal with standard deviation $\sigma_{\bar{X}}=\sigma / \sqrt{n}=3.6 / 6=0.6$

Figure 13. Probability of a type I error.

- the probability of committing a type I error is given by

$$
\alpha=P(\bar{X}<67)+P(\bar{X}>69) \quad \text { when } \mu=68
$$

- converting to z-values and looking at tables for normal distribution, we find that $\alpha=0.0950$
- interpretation: 9.5% of all samples of size 36 would lead us to reject $\mu=68 \mathrm{~kg}$ when in fact it is true
- to reduce α, we can increase sample size or widen the fail-to-reject region
- if we increase sample size to 64 , then repeating the calculations, we obtain $\alpha=0.0264$
- but reduction in α is not sufficient by itself to guarantee good testing procedure, we must also evaluate β for various alternative hypotheses
- if it's important to reject H_{0} when the true mean is some value $\mu \geq 70$ or $\mu \leq$ 66 , then the probability of committing a type II error should be calculated for alternatives $\mu=66$ and $\mu=70$
- due to symmetry, it's only necessary to consider one case
- a type II error occurs when $67<\bar{x}<69$ when H_{1} is true:

$$
\beta=P(67 \leq \bar{X} \leq 69 \text { when } \mu=70)
$$

- by calculating z-values and looking at tables, we obtain $\beta=0.0132$ (same result if the true value of μ was 66)
- again, the value of β can be decreased if sample size n is increased
- the probability of committing a type II error increases rapidly when the true value of μ approaches (but is not equal to) the hypothesized value
- for example, if the alternative hypothesis $\mu=68.5$ is true:

Figure 14. Probability of type II error for testing $\mu=68$ versus $\mu=70$.

Figure 15. Probability of type II error for testing $\mu=68$ vs $\mu=68.5$

Important Properties of a Hypothesis Test:

1. type I and type II error are related (decrease in probability of one generally results in an increase in the probability of the other)
2. size of the critical region (and therefore the probability of committing a type I error) can always be reduced by adjusting the critical values
3. increase in sample size will reduce α and β
4. if the null hypothesis H_{0} is false, β is maximized when the true value of a parameter approaches the hypothesized value (the greater the distance between the true and hypothesized value, the smaller it will be)

Power of a test: the probability of rejecting H_{0} given that a specific alternative is true.

- computed as $1-\beta$

One- and Two-Tailed Tests

- one-tailed test: a test of a statistical hypothesis where the alternative is one sided
- for example:

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta>\theta_{0}
\end{aligned}
$$

- two-tailed test: a test of a statistical hypothesis where the alternative is two sided
- for example:

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}: \theta \neq \theta_{0}
\end{aligned}
$$

Section 51

\boldsymbol{P}-Values

- so far, we are either in or out of a predetermined critical region
- but it is also important to know the probability of an outcome occurring, or something else that is equal or even rarer, given that H_{0} is true
- it gives the analyst an alternative (in terms of a probability) to a mere 'reject' or 'do not reject' conclusion
\boldsymbol{P}-value: the probability of generating the observed data or something else that is equal or rarer, given that H_{0} is true
- tells us the probability of a test statistic being as extreme or more extreme than the measured value
- textbook definition: the lowest level (of significance) at which the observed value of the test statistic is significant

Subsection 51.1

P-Values vs Classic Hypothesis Testing

- there are differences in approach and philosophy of these two methods
- when using P-values, there is no fixed α determined and conclusions are drawn on the basis of the size of the P-value together with subjective judgement of the analyst
- their approaches are summarized below

Approach to Hypothesis Testing with Fixed Probability of Type I Error:

1. State null and alternative hypotheses
2. choose a fixed significance level α
3. Choose an appropriate test statistic and establish the critical region based on α
4. Reject H_{0} if the computed test statistic is in the critical region, otherwise don't reject
5. Draw conclusions

Significance Testing (P-value) Approach:

1. state null and alternative hypotheses
2. Choose an appropriate test statistic
3. Compute P-value based on the computed value of the test statistic
4. Use jedgement based on the P-value and knowledge of the scientific system

Example:

- hypothesis: H_{0} is $\mu=5, H_{1}$ is $\mu \neq 5$
- Sample data:
- $n=40$ samples
$-\bar{x}=5.5$
$-s \approx \sigma=1$
- using classic hypothesis testing
- use a fixed probability of a type I error $\alpha=0.05$, then $z_{\alpha / 2}=1.96$
- compute

$$
z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=3.16
$$

- since this is outside of $[-1.96,1.96]$, we reject H_{0}
- using \mathbf{P}-value approach
- the P-value is the probability of something equally or more rare occurring:

$$
P=2 P(Z>3.16)=0.0016
$$

- so H_{0} is very unlikely

Section 52

Goodness-of-Fit Test

- so far we have only looked at testing statistical hypotheses about single population parameters such as μ and σ^{2}
- now we consider a test to determine if a population has a specified theoretical distribution
- the test is based on how good a fit there is between the frequency of occurrence of observations in a sample and the expected frequencies obtained from the hypothesized distributions

Definition 67 Goodness-of-Fit Test:

- setup:
- discrete RV with possible outcomes $i=1, \ldots, k$
- n trials
$-e_{i}=n P(i)$ is the expected frequency of outcome $i=1, \ldots, k$
$-o_{i}$ is the observed frequency of $i\left(O_{i}\right.$ is the RV)
Let

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}
$$

- distribution of χ^{2} is approximated very closely by the chi-squared distribution with $v=k-1$ degrees of freedom
- small χ^{2} indicates a good fit (large is bad fit)
- number of degrees of freedom is equal to $k-1$ since there are only $k-1$ freely determined frequencies (the last frequency is determined by the others)
- since large values of χ^{2} indicates a poor fit which leads to rejection of H_{0}, the critical region will fall in the right tail of the chi-squared distribution
- for a level of significance of α, we find the critical value χ_{α}^{2} from textbook Table A.5, then $\chi^{2}>\chi_{\alpha}^{2}$ is the critical region
- note: this decision criterion shouldn't be used unless each of the expected frequencies is ≥ 5

Linear Regression and Correlation

SEction 53

Function Approximation

- Basic setup:
- input/output pairs: $\left(x_{i}, y_{i}\right), i=1, \ldots, n$
- we want a function $y=f(x)$ that minimizes errors $e_{i}=y_{i}-f\left(x_{i}\right)$
- types of function approximators:
- linear: $y=a x+b$
- nonlinear (kernel regression, splines, neural networks)
- classification
* $x \in \mathbb{R}, y \in 0,1$
* support vector machine

SECTION 54

Linear Regression with Least Squares

- we want to fit a linear function $y=a x+b$ to the data
- the errors are $e_{i}=y_{i}-a x_{i}-b, i=1, \ldots, n$
- the total sqaured error is given by

$$
\mathcal{E}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

- we want to minimize total squared error, so we solve for a and b that minimize \mathcal{E} :
- we differentiate with respect to a and b and set equal to 0 :

$$
\begin{aligned}
\frac{d \mathcal{E}}{d a} & =\sum_{i=1}^{n} \frac{d}{d a}\left(y_{i}-a x_{i}-b\right)^{2}=0 \\
\frac{d \mathcal{E}}{d b} & =\sum_{i=1}^{n} \frac{d}{d b}\left(y_{i}-a x_{i}-b\right)^{2}=0 .
\end{aligned}
$$

- rearranging these equations, we get the 'normal equations' which can be solved to yield computing formulas for a and b :

Theorem 51
Estimating the Regression Coefficients: Given the sample $\left(x_{i}, y_{i}\right) ; i=1, \ldots, n$, the least squares estimates of the regression coefficients a and b are computed from the formulas

$$
\begin{aligned}
a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
b=\frac{\sum_{i=1}^{n} y_{i}-a \sum_{i=1}^{n} x_{i}}{n} & =\bar{y}-a \bar{x} .
\end{aligned}
$$

Interpretation:

- the errors are the vertical deviations from the line to each data point

Figure 16. Errors/residuals as vertical deviations.

- Deming regression uses geometric distance - better for independent errors in x_{i} and y_{i}
- for linear regression we don't need to know σ, but for Deming we need to know the ratio of variances of x and y errors

Example with Maximum Likelihood:

- recall MLE
- in this case, each error e_{i} is a realization of a normal RV E_{i} with $\mu=0$ and variance σ^{2}
- this implies that each y_{i} is also an RV with a mean of $a x_{i}-b$ and variance σ^{2}
- parameters: $\theta=(a, b)$
- likelihood function:

$$
L\left(e_{1}, \ldots, e_{n} ; a, b\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{e_{i}^{2} / 2 \sigma^{2}}
$$

- maximizing this function over (a, b) gives the least squares solution

Section 55

Properties of the Least Squares Estimators

Conclusion:

- if we assume $y_{i}=a x_{i}+b+e_{i}$
- e_{i} is a realization of the normal $\mathrm{RV} E_{i}$ with $\mu=0$ and variance σ^{2}
- y_{i} is also a realization of RV Y_{i} and is a function of E_{i}
- then a and b are realizations of $\mathrm{RVs} A$ and B
- we see that A and B are unbiased estimators of the true coefficients α and β

Subsection 55.1

Estimating the Error

- if $y_{i}=a x_{i}+b+e_{i}$ and e_{i} is a realization of an RV E_{i} with variance σ^{2}, then σ^{2} reflects random variation or experimental error variation around the regression line
- the total squared error is

$$
\sum_{i=1}^{n} e_{i}^{2}
$$

- we define the statistic

$$
S^{2}=\frac{\sum_{i=1}^{n} E_{i}^{2}}{n-2}
$$

- this is an unbiased estimator of σ^{2}
- if we denote the regression estimate as $\hat{y}_{i}=a x_{i}+b$ then $e_{i}=y_{i}-\hat{y}_{i}$
- we can write a realization of this as the following:

Theorem 52 An unbiased estimate of σ^{2} is

$$
\begin{aligned}
s^{2} & =\sum_{i=1}^{n} \frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2} \\
& =\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}-\alpha \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-2}
\end{aligned}
$$

[^0]: ${ }^{1}$ TeX file on GitHub

