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PART

IProbability
Section 1

Introduction

• probability comes from:

– things we can’t model well
– good models but limited measurements

• uncertainty is unavoidable, but probability helps describe uncertainty

Section 2

Sample Space

Definition 1 Sample Space: the set of all possible outcomes, S

• e.g. for 1 coin flip: S = H, T

• each outcome in a sample space is called an element or member

Section 3

Events

Definition 2 Event: a subset of sample space S

• e.g. for a die: each element {1, 2, 3, . . . } is an event, rolling even or rolling odd
are events

Definition 3 The complement of an event A with respect to S : everything in S that isn’t in A

• denoted by A′

• e.g. for a die: {1, 2} is a complement of {3, 4, 5, 6}

Definition 4 The intersection of two events A and B : everything in A and B

• denoted by A ∩ B

• A and B are mutually exclusive if A ∩ B = ∅ (empty set)

Definition 5 The union of two events A and B : everything in A or B

• denoted by A ∪ B

• A ∪ A′ = S

1
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Section 4

Counting

Theorem 1 Generalized Multiplication Rule: if an operation can be performed in n1 ways,
and if for each of these a second operation can be performed in n2 ways, and for each
of these . . . , then the sequence of k operations can be performed in n1n2 . . . nk ways

• e.g. Menu options: 3 appetizers, 4 mains, 2 deserts

• then there are 3 · 4 · 2 = 24 options

Definition 6 Permutation: an arrangement of all or part of a set of objects

• we can derive formula for permutations using the multiplication rule:

• for example: permutations of three letters a, b, and c

• there are 3 choices for first position, and no matter what you choose, there will be
2 choices for the second, and 1 choice for the third

• therefore: (3)(2)(1) = 6 permutations

Theorem 2 The number of permutations of n objects is n!.

Theorem 3 The number of permutations of r out of n items is

nPr = n!
(n − r)! .

Theorem 4 The number of permutations of n objects arranged in a circle is (n − 1)!.

Subsection 4.1

Permutations with Identical Items

Theorem 5 Given m kinds of items, and each kind of item has nk of them (k = 1, 2, . . . , m), then
the number of distinct permuations is(

n

n1, n2, . . . , nm

)
= n!

n1!n2! . . . nm! .

Subsection 4.2

Partitions

• partitions divide a set into subsets

• often we want to find the number of possible ways to split a set up into partitions,
where in each partition, the order doesn’t matter

Theorem 6 Given m partitions of size n1, n2, . . . , nm, the number of ways of partitioning the set
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is (
n

n1, n2, . . . , nm

)
= n!

n1!n2! . . . nm! .

• note that this is the same formula as the number of permutations with identical
items

• this is because once we put a group of items in a partition, their order doesn’t
matter anymore and they are essentially identical elements to us

Subsection 4.3

Combinations

• combinations are ways of selecting objects without regard to order

• combinations are like permutations except you don’t care about order

• you can think of a size r combination as paritioning a set into 2 cells, where one
cell has size r and the other is the rest of the set

– how many ways can you put items from a set into a size r partition

• using the partition formula:

Theorem 7 The number of size r combinations of n distinct objects is(
n

r, n − r

)
= n!

r!(n − r)! ,

or more commonly written as "n choose r":(
n

r

)
.

Section 5

Probability of an Event

• a measure of the likelihood of an event happening – a value ranging from 0 to 1

Definition 7 The probability of an event A in sample space S is the sum of the weights of all
sample points in A.

0 ≤ P (A) ≤ 1, P (∅) = 0, and P (S) = 1.

• if A1, A2, A3, . . . is a sequence of mutually exclusive events, then

P (A1 ∪ A2 ∪ A3 ∪ . . .) = P (A1) + P (A2) + P (A3) + . . . .



Conditional Probability, Independence, and the Product Rule Additive Rules 4

Subsection 5.1

Additive Rules

Theorem 8 Additive Rule (applies to unions of events): if A and B are two events, then

P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

• if A and B are mutually exclusive, then A ∩ B = ∅ and

P (A ∪ B) = P (A) + P (B).

• if A and A′ are complementary events, then

P (A) + P (A′) = 1.

Figure 1. Additive rule of probability

Theorem 9 For three events A, B, and C,

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩ B) − P (A ∩ C) − P (B ∩ C) + P (A ∩ B ∩ C).

Section 6

Conditional Probability, Independence, and the Prod-
uct Rule

Subsection 6.1

Conditional Probability

• conditional probability is the probability of an event B occurring when it is
known that some event A has occurred

Definition 8 The conditional probability of B, given A, is denoted by P (B|A) and is defined by

P (B|A) = P (A ∩ B)
P (A) , provided P (A) > 0.

• the probability of B happening, given A, is equal to the probability of their inter-
section divided by the probability of A happening
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Subsection 6.2

Independence

Definition 9 A and B are independent if and only if

P (A|B) = P (A) or P (B|A) = P (B).

• probability of A or B happening doesn’t depend on if the other event happened

• otherwise, A and B are dependent

• the condition P (B|A) = P (B) implies that P (A|B) = P (A)

• note that independence ̸= mutually exclusive

– e.g. head and tails are mutually exclusive but not independent (P (H|T ) = 0)
Subsection 6.3

Product Rule

• allows us to calculate the probability that two events will both occur

Theorem 10 Product Rule: If in an experiment the events A and B can both occur, then

P (A ∩ B) = P (A)P (B|A), provided P (A) > 0.

Theorem 11 Two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B).

• the probability that two independent events will both occur is equal to the
product of their individual probabilities

• notice how this is a special case of the product rule P (A ∩ B) = P (A)P (B|A)
where P (B|A) = P (B) since A and B are independent

Theorem 12 Product Rule for two or more events: if the events A1, A2, . . . , Ak can occur,
then

refer to the textbook theorem 2.12 lol.

If the events A1, A2, . . . , Ak are independent, then

P (A1 ∩ A2 ∩ . . . ∩ Ak) = P (A1)P (A2) . . . P (Ak).

Section 7

Bayes’ Rule

Subsection 7.1

Total Probability

• addresses the problem of finding the total probability of something happening,
when you know its conditional probabilities
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• for example, what is the probability of a product being defective if it was produced
by machines that each have a probability of creating defective products

Theorem 13 If the events B1, B2, . . . , Bk constitute a partition of the sample space S such that
P (Bi) ̸= 0 for i = 1, 2, . . . k, then for any event A of S,

P (A) =
k∑

i=1
P (Bi ∩ A) =

k∑
i=1

P (Bi)P (A|Bi).

Figure 2. Partitioning the sample space S. The probability of A is the sum of the probabilities
of the intersections between the partitions and A.

Subsection 7.2

Bayes’ Rule

• addresses the problem of finding conditional probability, P (Bi|A)

• for example, what is the probability that a product was created by a certain
machine, given that the product is defective

• recall formula for conditional probability, and substitute in the formula for total
probability in the denominator:

Theorem 14 Bayes’ Rule: If the events B1, B2, . . . , Bk constitute a partition of the sample
space S such that P (Bi) ̸= 0 for i = 1, 2, . . . , k, then for any event A in S such that
P (A) ̸= 0, then the probability of a cell Bn in the partition, given A, is given by

P (Bn|A) = P (Bn ∩ A)∑k
i=1 P (Bi ∩ A)

= P (Bn)P (A|Bn)∑k
i=1 P (Bi)P (A|Bi)

.

• recall the product rule, rearranging it, we get:

P (B|A) = P (B ∩ A)
P (A) and P (A|B) = P (A ∩ B)

P (B) .

• noting that P (B ∩ A) = P (A ∩ B) , we can rearrange and equate the above
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equations:

P (B|A)P (A) = P (A|B)P (B)
or

P (B|A)
P (B) = P (A|B)

P (A) .



PART

IIRandom Variables and Proba-
bility Distributions
Section 8

Concept of a Random Variable

Definition 10 Random variable (RV): a function that maps each element in the sample space to
a real number

• we use capital letters, say X, to denote a random variable and use its corre-
sponding small letter, x, for one of its values it can take on

Definition 11 Discrete RV: X takes on a finite or countable number of values
Continuous RV: X takes on values in an interval of R

Section 9

Discrete Probability Distributions

Definition 12 The set of ordered pairs (x, f(x)) is a probability function, probability mass
function (PMF), or probability distribution of the discrete RV X if, for each
possible outcome x,

1. f(x) ≥ 0

2.
∑

x f(x) = 1

3. P(X = x) = f(x)

Definition 13 The cumulative distribution function (CDF) F (x) of a discrete random variable
X with PMF f(x) is the probability of X being less than or equal to x :

F (x) = P (X ≤ x) =
∑
t≤x

f(t), for − ∞ < x < ∞.

Section 10

Continuous Probability Distributions

• for a continuous random variable, the probability of it assuming a specific value
exactly is 0 since there are infinite values

• but the probability of X assuming a value in an interval is nonzero

8
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Definition 14 The function f(x) is a probability density function (PDF) for the continuous RV
X, defined over the set of real numbers, if

1. f(x) ≥ 0, for all x ∈ R

2.
∫ ∞

−∞ f(x)dx = 1

3. P (a < X < b) =
∫ b

a
f(x)dx

Definition 15 The cumulative distribution function F (x) of a continuous random variable X
with PDF f(x) is

F (x) = P (X ≤ x) =
∫ x

−∞
f(t)dt, for − ∞ < x < ∞.

Section 11

Joint Probability Distributions

• previous section only focused on 1D sample spaces

• when dealing with the simultaneous occurrence of two RVs:

Definition 16 The function f(x, y) is a joint probability distribution or joint PMF of the
discrete random variables X and Y if

1. f(x, y) ≥ 0 for all (x, y)

2.
∑

x

∑
y f(x, y) = 1

3. P (X = x, Y = y) = f(x, y)

For any region A in the xy plane, P [(X, Y ) ∈ A] =
∑ ∑

A f(x, y).

Definition 17 The function f(x, y) is a joint density function of the continuous random variables
X and Y if

1. f(x, y) ≥ 0, for all (x, y)

2.
∫ ∞

−∞
∫ ∞

−∞ f(x, y)dxdy = 1

3. P [(X, Y ) ∈ A] =
∫ ∫

A
f(x, y)dxdy, for any region A in the xy plane

Subsection 11.1

Marginal Distributions

• what if we know the joint distribution of two RVs but only care about one (want
to obtain the probability distribution of an individual RV)

• simply integrate/add along the variable to eliminate

Definition 18 The marginal distributions of X alone and of Y alone are



• for the discrete case:

g(x) =
∑

y

f(x, y) and h(y) =
∑

x

f(x, y).

• for the continuous case:

g(x) =
∫ ∞

−∞
f(x, y)dy and h(y) =

∫ ∞

−∞
f(x, y)dx.

• idea: marginal distribution is just the ’weighted average’ of f(x, y) over all possi-
bilities of x or y

Subsection 11.2

Conditional Distributions

• recall conditional probability

• conditional distributions take very similar form

Definition 19 Let X and Y be two RVs. The conditional distribution of RVs (discrete or contin-
uous) is

f(y|x) = f(x, y)
g(x)

f(x|y) = f(x, y)
h(y) .

• if we want to find the probability that X falls between a and b, given Y = y :

P (a < X < b|Y = y) =
∑

a<x<b

f(x|y)

P (a < X < b|Y = y) =
∫ b

a

f(x|y)dx.

Subsection 11.3

Statistical Independence

Definition 20 Let X and Y be RVs with joint distribution f(x, y) and marginal distributions g(x)
and h(y). X and Y are statistically independent if and only if

f(x, y) = g(x)h(y).

for all (x, y) within their range.

• same idea applies for joint probability distributions of more than 2 RVs – their
joint probability distributions are simply the product of the marginal distributions
if the RVs are statistically independent

10
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PART

IIIMathematical Expectation
Section 12

Mean of a Random Variable

• essentially calculating what value of x is most likely to occur based on the proba-
bility distribution f(x)

Definition 21 Let X be an RV with probability distribution f(x). The mean, or expected value
of X is

• for discrete case:

µ = E(X) =
∑

x

xf(x).

• for continuous case:

µ = E(X) =
∫ ∞

−∞
xf(x)dx.

• notice: we mutliply the value of x with its own probability so that values of x with
higher probability have a greater influence on what the expected value is

Definition 22 Let X be an RV with probability distribution f(x). We define a new RV as a function
of X, g(X). The expectation of the RV g(X) is

• for discrete case:

µg(X) = E[g(X)] =
∑

x

g(x)f(x).

• for continuous case:

µg(X) = E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx.

Definition 23 Let X and Y be RVs with joint probability distribution f(x, y). The expectation of
the RV g(X, Y ) is

• for discrete case:

µg(X,Y ) = E[g(X, Y )] =
∑

x

∑
y

g(x, y)f(x, y).

• for continuous case:

µg(X,Y ) = E[g(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy.
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• generalization of the calculation of mathematical expectations of functions of more
than 2 RVs is straightforward

Section 13

Variance and Covariance of Random Variables

Subsection 13.1

Variance

• measures how spread out a distribution is – the variability of an RV

Definition 24 Let X be an RV with probability distribution f(x) and mean µ = E(X). The vari-
ance of X is

• if X is discrete:

σ2 = E[(X − µ)2] =
∑

x

(x − µ)2f(x).

• if X is continuous:

σ2 = E[(X − µ)2] =
∫ ∞

−∞
(x − µ)2f(x)dx.

The positive square root of the variance, σ, is called the standard deviation of X.

• sometimes, variance is written as var(X)

• the x − µ centers the distribution on the y-axis

• squaring it allows for points at a greater distance from the mean µ to have a larger
contribution, therefore measuring how spread out the distribution is

Theorem 15 The variance of an RV X is

σ2 = E(X2) − µ2.

• proof is in section 4.2 of textbook

Subsection 13.2

Covariance

• measures the joint variability of two variables – the direction of the relationship
between two variables

– if large values of both variables occur together, covariance is positive
– if large values of one correspond to small values of the other RV, covariance

is negative

Definition 25 Let X and Y be RVs with joint probability distribution f(x, y). The covariance of
X and Y is
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• if X and Y are discrete:

σXY = E[(X − µX)(Y − µY )] =
∑

x

∑
y

(x − µX)(y − µY )f(x, y).

• if X and Y are continuous:

σXY = E[(X − µX)(Y − µY )] =
∫ ∞

−∞

∫ ∞

−∞
(x − µX)(y − µY )f(x, y)dxdy.

• also written as cov(X, Y )

Theorem 16 The covariance of two random variables X and Y with means µX and µY is given by

σXY = E(XY ) − µXµY .

Subsection 13.3

Correlation Coefficient

• the sign of covariance provides information about the nature of the relationship
between two variables, but the magnitude does not indicated anything about the
strength of the relationship since covariance isn’t scale-free

– its magnitude depends on the units used to measure X and Y

• the scale-free version of covariance is called the correlation coefficient:

Definition 26 Let X and Y be RVs with covariance σXY and standard deviations σX and σY . The
correlation coefficient of X and Y is

ρXY = σXY

σXσY
.

• like covariance, but normalized

• magnitude tells us strength of relationship

• −1 ≤ ρXY ≤ 1

• ’uncorrelated’ if ρXY = 0

– since that would mean σXY = 0

Section 14

Means and Variances of Linear Combinations of Ran-
dom Variables

Subsection 14.1

Means of LCs of RVs

• expectation is linear
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Theorem 17 If a and b are constants, then

E(aX + b) = aE(X) + b.

Theorem 18 The expectation of the sum or difference of two or more functions of an RV is the sum
or difference of the expectations of the functions, i.e.

E[g(X) ± h(X)] = E[g(X)] ± E[h(X)].

Subsection 14.2

Variances of LCs of RVs

Theorem 19 Let X and Y be two independent RVs. Then

E(XY ) = E(X)E(Y ).

• recall formula for covariance:

σXY = E(XY ) − E(X)E(Y ).

• if X and Y are independent, then E(XY ) = E(X)E(Y ), so:

Theorem 20 Let X and Y be two independent RVs. Then σXY = 0

• i.e. independence implies uncorrelated

• but uncorrelated does not imply independence

• independece is a stronger property than uncorrelated

Theorem 21 The variance of aX + bY + c, where a, b, and c are constants, is

σ2
aX+bY +c = a2σ2

X + b2σ2
Y + 2abσXY .

• notice that c has no effect on the variance – the variance is unchanged if a constant
is added or subtracted from an RV

– it simply shifts the values of the RV left or right, it doesn’t change the vari-
ability

• also notice that if X and Y are independent, then the last term is 0

• multiplying an RV by a constant scales the variance by the square of the constant,
i.e.

Theorem 22 The variance of aX, where a is a constant, is σ2
aX = a2σ2

X
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IVCommon Discrete Probability
Distributions
Section 15

Uniform Distribution

• every element in S has the same probability (e.g. coin flip)

• if S = 1, 2, . . . , n, then f(k) = 1
n for k ∈ S

Section 16

Binomial Distribution

Definition 27 Binomial Distribution: the probability of x successes in n trials for a binomial
experiment:

b(x; n, p) =
(

n

x

)
px(1 − p)n−x.

Theorem 23 The mean and variance of the binomial distribution are

µ = np and σ2 = np(1 − p).

Section 17

Multinomial Distribution

• like binomial but each trial has more than 2 possibilities, E1, E2, . . . , Ek, where
k is the number of possibilities a trial can take on

Definition 28 Multinomial Distribution: the probability of E1 happening x1 times, E2 happen-
ing x2 times, . . . , Ek happening xk times, where x1 + x2 + . . . + xk = n:

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n) =
(

n

x1, x2, . . . , xk

)
px1

1 px2
2 . . . pxk

k .

Section 18

Hypergeometric Distribution

Definition 29 Hypergeometric Distribution: given that there are a set amount of successes K
in a sample space of size N , what is the probability of selecting x successes if you

15
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select n times (with replacement)

h(x; N, n, K) =
(

K
x

)(
N−K
n−x

)(
N
n

) , (n − x ≤ N − K).

• mean and variance:

µ = nK

N
and σ2 = N − n

N − 1 · n · K

N

(
1 − K

N

)
.

Section 19

Negative Binomial Distribution

Definition 30 Negative Binomial Distribution: probability of the k-th success occuring on the
x-th trial, where the probability of a success is p

b∗(x; k, p) =
(

x − 1
k − 1

)
pk(1 − p)x−k.

• note:

b∗(x; k, p) = pb(k − 1; x − 1, p).

Subsection 19.1

Geometric Distribution

Definition 31 Geometric Distribution: a special case of the negative binomial distribution, where
k = 1, i.e. probability of the first success happening on the xth trial

g(x; p) = b∗(x; 1, p) = p(1 − p)x−1.

• mean and variance:

µ = 1
p

and σ2 = 1 − p

p2 .

Section 20

Poisson Distribution

• like binomial except number of trials is continuous over some interval (n → ∞)

• properties of a Poisson Process:

1. the number of outcomes in one time interval is independent of the number
that occur in any other interval – the Poisson process has no memory

2. the probability that a single outcome will occur during an interval is pro-
portional to the length of the interval and doesn’t depend on the number of
outcomes occurring outside this interval
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Definition 32 Poisson Distribution: the probability distribution of a Poisson random variable X,
representing the number of outcomes occurring in a given time interval or specified
region denoted by t, is

p(x; λt) = e−λt(λt)x

x! , x = 0, 1, . . . .

where λ is the average number of outcomes per unit interval

• mean and variance are both given by

µ = σ2 = λt.

• note: the binomial distribution b(x; n, p) becomes the Poisson distribution
p(x; µ) as the sample size n → ∞
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VContinuous Probability Distri-
butions
Section 21

Continuous Uniform Distribution

Definition 33 Continuous Uniform Distribution:

f(x; A, B) =
{

1
B−A , A ≤ x ≤ B

0, elsewhere
.

• the mean and variance are given by

µ = A + B

2 and σ2 = (B − A)2

12 .

Section 22

Normal Distribution

• the most important continuous probability distribution in the entire field of statis-
tics

• also known as the Gaussian distribution

• a continuous random variable X have the bell-shaped distribution of the normal
curve is called a normal random variable

Definition 34 Normal/Gaussian Distribution:

n(x; µ, σ) = 1√
2πσ

e− 1
2σ2 (x−µ)2

.

• the mode occurs at the maximum, when x = µ

• it is symmetric about x = µ

• points of inflection occur at x = µ ± σ

Subsection 22.1

Standard Normal Distribution

• calculating areas under the normal curve is important to obtain probabilities, but
it’s rather dumb to make tables of values for every single value of µ and σ2

• instead, we are able to transform all observations of any normal RV X into a new
set of observations of a normal RV Z with mean 0 and variance 1:

Z = X − µ

σ
.

18



Gamma and Exponential Distributions 19

Definition 35 Standard Normal Distribution: special case of the normal distribution where
µ = 0 and σ2 = 1

Section 23

Normal Approximation to the Binomial Distribution

Theorem 24 if X is a binomial RV with µ = np and σ2 = np(1 − p), then the limiting form of the
distribution of

Z = X − np√
np(1 − p)

.

as n → ∞ is the standard normal distribution n(z; 0, 1)

Section 24

Gamma and Exponential Distributions

• the Gamma function is given by

Γ(α) =
∫ ∞

0
xα−1e−xdx, for α > 0.

• properties of the Gamma function:

1. Γ(n) = (n − 1)(n − 2) . . . (1)Γ(1), for a positive integer n

2. Γ(n) = (n − 1)! for a positive integer n

3. Γ(1) = 1
4. Γ( 1

2 ) =
√

π

Definition 36 Gamma Distribution:

f(x; α, β) =
{

1
βαΓ(α) xα−1e−x/β , x > 0
0, elsewhere

.

where α, β > 0

• mean and variance:

µ = αβ and σ2 = αβ2.

Definition 37 Exponential Distribution: special case of Gamma distributiion where α = 1

f(x; β) =
{

1
β e−x/β , x > 0
0, elsewhere

.

where β > 0

• mean and variance:

µ = β and σ2 = β2.



Weibull Distribution 20

Section 25

Chi-Squared Distribution

Definition 38 Chi-Square Distribution: special case of Gamma distribution where α = v/2,
β = 2, and v is a positive integer and is the only parameter, called the degrees of
freedom

f(x; v) =
{

1
2v/2Γ(v/2) xv/2−1e−x/2, x > 0
0, elsewhere

.

• mean and variance:

µ = v and σ2 = 2v.

Section 26

Weibull Distribution

Definition 39 Weibull Distribution:

f(x; α, β) =
{

αβxβ−1e−αxβ

, x > 0
0, elsewhere

.

where α, β > 0

• its cumulative function is given by

F (x) = 1 − e−αxβ

.
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VIFunctions of Random Variables
Section 27

Transformations of Variables

Theorem 25 Suppose X is a discrete RV with probability distribution f(x). Let Y = u(X) define
a one-to-one transformation between values of X and Y so that we can also write
x = w(y). Then the probability distribution of Y is

g(y) = f(w(y)).

• for the case of joint probability distributions f(x1, x2), the probability distribu-
tion of Y is

g(y1, y2) = f [w1(y1, y2), w2(y1, y2)].

Theorem 26 For the case where the RV is continuous, the probability distribution of Y is

g(y) = f(w(y))|J |.

where J = w′(y) is the Jacobian of the transformation.

• for joint probability distributions:

g(x1, x2) = f [w1(y1, y2), w2(y1, y2)].

where the Jacobian is the determinant of the Jacobian matrix

Section 28

Moments and Moment-Generating Functions

Definition 40 The r th moment about the origin of the RV X is given by

µ′
r = E(Xr) =

∫ ∞

−∞
xrf(x)dx.

• we can write mean and variance of a random variable in terms of moments:

µ = µ′
1 and σ2 = µ′

2 − µ2.

Definition 41 Moment-generating function of the RV X: alternative procedure for determining
moments

MX(t) = E(etX) =
∫ ∞

−∞
etxf(x)dx.

21



Moments and Moment-Generating Functions Linear Combinations of Random Variables 22

• moment-generating functions will exist only if the integral in the above definition
converges

• if it exists, a moment-generating function of RV X can be used to generate all the
moments of that variable using the below method:

Theorem 27 Let X be a random variable with moment-generating function MX(t), then

drMX(t)
dtr

∣∣∣∣
t=0

= µ′
r.

Theorem 28 Uniqueness Theorem: Let X and Y be two RVs with moment-generating functions
MX(t) and MY (t). If MX(t) = MY (t) for all values of t, then X and Y have the same
probability distribution.

Theorem 29 1. MX+a(t) = eatMX(t)

2. MaX(t) = MX(at)

Theorem 30 If X1, . . . , Xn are independent RVs with moment-generating functions, and Y = X1 +
. . . + Xn then

MY (t) = MX1(t)MX2(t) . . . MXn(t).

Subsection 28.1

Linear Combinations of Random Variables

Theorem 31 If X1, X2, . . . , Xn are independent RVs having normal distributions with means
µ1, µ2, . . . , µn and variances σ2

1 , σ2
2 , . . . , σ2

n, then the RV

Y = a1X1 + a2X2 + . . . + anXn.

has a normal distribution with mean

µY = a1µ1 + a2µ2 + . . . + anµn.

and variance

σ2
Y = a2

1σ2
1 + a2

2σ2
2 + . . . + a2

nσ2
n.



PART

VIISampling
Why sample?

• can’t measure entire population

• random sampling ensures sample reflects population

Section 29

Measures of Location: Sample Mean and Median

• Given sample data: x1, . . . , xn

Definition 42 Sample Mean: the numerical average

x = 1
n

n∑
i=1

xi.

Definition 43 Sample Median: given that x1, x2, . . . , xn are arranged in increasing order of mag-
nitude,

xm =
{

x n+1
2

if n odd
1
2

(
x n

2
+ x n

2 +1
)

if n even
.

• purpose of the sample median is to reflect the central tendency of the sample in
a way that is uninfluenced by extreme values or outliers (unlike the mean)

Definition 44 Mode: most frequently occurring value

• e.g. 1, 1, 1, 1, 1, 8

• mode = 1

Section 30

Measures of Variability

Subsection 30.1

Sample Range and Sample Standard Deviation

• sample range is given by Xmax − Xmin

Definition 45 Sample Variance, denoted by s2, is given by

s2 = 1
n − 1

n∑
i=1

(xi − x)2
.

23



Visualization 24

The sample standard deviation, denoted by s, is the positive square root of s2:

s =
√

s2.

• the quantity n − 1 is often called the degrees of freedom associated with the
variance

• this is because in general,
∑n

i=1(xi − x) = 0, so the last value in the sample can
be determined only using the first n − 1 values

• this means the computation of sample variance doesn’t involve all n independent
squared deviations from the mean

• there are only n − 1 "pieces of information" that produce s2

• therefore: there are n − 1 degrees of freedom instead of n when computing sample
variance

Section 31

Visualization

Subsection 31.1

Histogram

• plots the frequency of each outcome

• also can plot relative frequency:

• dividing each class frequency by the total number of observations, we obtain the
relative frequency of each class interval

• we can plot relative frequency in a histogram

Figure 3. Example of relative frequency histogram.

Subsection 31.2

Box-and-Whisker Plot

• displays the center of location, variability, and degree of asymmetry



• encloses the interquartile range of the data in a box which also displays the median
within

– essentially encloses the middle 50% of the data

• the extremes of the interquartile range are the 75th percentile (upper quartile)
and 25th percentile (lower quartile)

• "whiskers" extend from the sides of the box showing extreme observations

• outliers may be plotted as points as well

Figure 4. Example of box and whisker plot.

PART

VIIISampling Distributions
Section 32

Random Sampling

Definition 46 A population consists of all possible observations.

Definition 47 A sample is a subset of a population.

• we work with samples because it is impractical to observe whole population

Definition 48 Let X1, X2, . . . , Xn be n independent random variables, each having the same prob-
ability distribution f(x). Define X1, X2, . . . , Xn to be a random sample of size n
from the population f(x) and write its joint probability as

f(x1, x2, . . . xn) = f(x1)f(x2) . . . f(xn).

25



Sampling Distribution of Means and the Central Limit Theorem 26

Section 33

Statistics and Sampling Distributions

Definition 49 Statistic: Any function of the random variables constituting a random sample (e.g.
mean, median, variance, etc.).

• a sample is biased if it consistently over- or underestimates a statistic of interest

Definition 50 Sampling Distribution: The probability distribution of a statistic.

• the sampling distribution of a statistic depends on the distribution of the popula-
tion, size of samples, and method of choosing samples

• it is very important to notice and understand (for pretty much the rest
of the course) that the mean and variance of a statistic is not the same
as the mean and variance for the population

Section 34

Sampling Distribution of Means and the Central Limit
Theorem

• the sampling distribution of X with sample size n is the distribution that results
when an experiment is conducted over and over (always with sample size n) and
many values of X result

• the sampling distribution describes the variability of sample averages around the
population mean µ

• if X1, . . . , Xn are normal, all with mean µ and variance σ2, then X has a normal
distribution with mean

µX = 1
n

(µ1 + . . . + µn) = µ.

and variance

σ2
X

= 1
n2 (σ2

1 + . . . + σ2
n) = σ2

n
.

• notice that the mean and variance of the statistic (denoted above as
µX , σ2

X
) is not the same as the mean and variance for the population

(denoted above as µ, σ2)

Subsection 34.1

The Central Limit Theorem (CLT)

Theorem 32 Central Limit Theorem: Suppose X is the mean of a random sample of size n
taken from a population with mean µ and finite variance σ2. Define an RV

Z = X − µ

σ/
√

n
.



Sampling Distribution of Means and the Central Limit TheoremSampling Distribution of the Difference Between Two Means 27

As n → ∞, the distribution of Z converges to the standard normal distribution,
n(z; 0, 1).

Figure 5. Illustration of the Central Limit Theorem. Note that it shows how the mean of X
remains µ for any sample size and the variance gets smaller as n increases.

• CLT is widely applicable – works with any distribution as long as observations
have same probability distributions with finite variance

• variance of mean shrinks with
√

n – average becomes more accurate with a bigger
sample

Subsection 34.2

Sampling Distribution of the Difference Between Two Means

Theorem 33 If independent samples of size n1 and n2 are drawn at random from two populations
with means µ1 and µ2 and variances σ2

1 and σ2
2 , then the sampling distribution of the

differences of means, X1 − X2, is approximately normally distributed with mean and
variance given by

µX1−X2
= µ1 − µ2 and σ2

X1−X2
= σ2

1
n1

+ σ2
2

n2
.

Therefore,

Z = (X1 − X2) − (µ1 − µ2)√
(σ2

1/n1) + (σ2
2/n2)

is approximately a standard normal variable.

Section 35

Sampling Distribution of Variance



Sampling Distribution of Variance 28

Theorem 34 If S2 is the variance of a random sample of size n taken from a normal population
having the variance σ2, then the statistic

χ2 = (n − 1)S2

σ2 =
n∑

i=1

(Xi − X)
σ2 .

has a chi-squared distribution with ν = n − 1.

Figure 6. The chi-squared disribution. We let χ2
α represent the χ2 value above which we find

an area of α.

Subsection 35.1

Degrees of Freedom as a Measure of Sample Information

• recall that
n∑

i=1

(Xi − µ)2

σ2

has a chi-squared distribution with n degrees of freedom while the RV

(n − 1)S2

σ2 =
n∑

i=1

(Xi − X)
σ2 .

has a chi-squared distribution with n − 1 degrees of freedom

• this is because when µ is not known, i.e. when we are considering the distribution
of

n∑
i=1

(Xi − X)
σ2 .

there is 1 less degree of freedom since a degree of freedom is lost in the estimation
of µ (when µ is replaced by x)

• when µ is known, there are n degrees of freedom, or independent pieces of infor-
mation, in a random sample from a normal distribution



t-Distribution 29

• when data (values in the sample) are used to compute the mean, there is 1 less
DOF, 1 less piece of information, used to estimate σ2

Section 36

t-Distribution

• CLT is for making inferences about the mean µ assuming variance σ2 is known

• t-distribution is for when σ2 is not known

• consider the statistic

T = X − µ

S/
√

n
.

where

S =

√√√√ 1
n − 1

n∑
i=1

(Xi − X)2.

• if sample size is large (n ≥ 30), S is close to σ, and T follows a normal distribution

• if sample size is smaller, the values of S2 fluctuate considerably and the disribution
of T deviates much more from the standard normal distribution

• the t-distribution is much more accurate in this case

Definition 51 t-distribution:

h(t) = Γ[(v + 1)/2]
Γ(v/2)

√
πv

(
1 + t2

v

)−(v+1)/2

, −∞ < t < ∞.

• if X1, . . . , Xn are independent RVs that are all normal with mean µ and standard
deviation σ, and

X = 1
n

n∑
i=1

Xi and S2 = 1
n − 1

n∑
i=1

(Xi − X)2,

then the RV T = X−µ
S/

√
n

has a t-distribution with v = n − 1 degrees of freedom

• intuition behind the t-distribution:

– if we knew σ, we’d have a normal distribution

– instead we only have estimate S2 – less information, so we expect more vari-
ability

• variance of T depends on the sample size n and is always greater than 1

• in the limit that sample size n → ∞ and subsequently v → ∞, the t-distribution
becomes the standard normal distribution
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Figure 7. Illustration of the t-distribution. We let tα represent the t-value above which we
find an area equal to α.

Section 37

F-Distribution

• define a statistic F to be the ratio of two independent chi-squared RVs U and V ,
each divided by its number of degrees of freedom, v1 and v2:

F = U/v1

V/v2
.

Definition 52 F-distribution: sampling distribution of F is given by

h(f) =
{

Γ[(v1+v2)/2](v1/v2)v1/2

Γ(v1/2)Γ(v2/2)
f(v1/2)−1

(1+v1f/v2)(v1+v2)/2 , f > 0
0, f ≤ 0

.

Figure 8. Typical F -distributions. We let fα be the f -value above which we find an area equal
to α.

Subsection 37.1

The F-Distribution with Two Sample Variances

Theorem 35 If S2
1 and S2

2 are the variances of independent random samples of size n1 and n2 taken
from normal populations with variances σ2

1 and σ2
2 , then

F = S2
1/σ2

1
S2

2/σ2
2

= σ2
2S2

1
σ2

1S2
2

.

has an F -distribution with v1 = n1 − 1 and v2 = n2 − 1 degrees of freedom
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Section 38

Quantile and Probability Plots

• quantile plots depict (in sample form) the cumulative distribution function

Definition 53 A quantile of a sample, denoted by q(f), is a value for which a specified fraction of
f of the data values is less than or equal to q(f).

• a quantile plot plots q(f) versus f , where q(f) is on the y-axis

• to sketch:

– rank sample in increasing order, x1, . . . , xn

– for each data point i = 1, . . . , n, plot(
i − 3/8
n + 1/4 , xi

)
.

Figure 9. Example of a quantile plot.

• notice in Figure 9:

– q(0.5) is the sample median
– lower quartile (25th percentile) is q(0.25)
– upper quartile (75th percentile) is q(0.75)
– flat areas indicate clusters of data
– steep areas indicate sparsity of data



Quantile and Probability Plots Normal Quantile-Quantile Plot 32

Subsection 38.1

Normal Quantile-Quantile Plot

• we often want to know how close data is to a normal distribution since we un-
derstand normal distributions very well and many tools (t and F distributions)
assume normality

• the expression for the quantile of a normal distribution is very complicated but
can be approximated as

qµ,σ(f) = µ + σ(4.91(f0.14 − (1 − f)0.14)).

Definition 54 Normal quantile-quantile plot: a plot of y(i) (ordered observations) against
q0,1(fi), where fi = i−3/8

n+1/4 .

• if the curve is straight, the data is roughly normal

Figure 10. Example of a normal quantile-quantile plot.



PART

IXEstimation
Section 39

Classical Methods of Estimation

• in general, given a sample, we write

– θ is the true parameter of the population (like µ)
– θ̂ is the observed value from the sample (like x)
– Θ̂ is the sample statistic (like X)

Definition 55 A point estimate of some population parameter θ is a single value θ̂ of a statistic
Θ̂.

• for example: the value x of the statistic X, computed from a sample of size n,
is a point estimate of the population parameter µ.

Subsection 39.1

Unbiased Estimator

Definition 56 A statistic Θ̂ is said to be an unbiased estimator of the parameter θ if

µΘ̂ = E(Θ̂) = θ.

Subsection 39.2

Variance of a Point Estimator

Definition 57 Considering all possible unbiased estimators of some parameter θ, the one with the
smallest variance is called the most efficient estimator of θ.

Figure 11. Sampling distributions of different estimators of θ.

33



Single Sample: Estimating the Mean Interval Estimation 34

Subsection 39.3

Interval Estimation

• a point estimate θ̂ is rarely exactly θ

• it’s useful to have an interval, θ̂L ≤ θ ≤ θ̂U

• θ̂L and θ̂U depend on the value of the statistic Θ̂ for a particular sample and also
on the sampling distribution of Θ̂

• we want to make a statement of the form

P (Θ̂L < θ < Θ̂U ) = 1 − α

for 0 < α < 1

• the interval θ̂L ≤ θ ≤ θ̂U , computed from the selected sample, is called a 100(1 −
α)% confidence interval

– e.g. if α = 0.05, we have a 95% confidence interval

• the fraction 1 − α is called the confidence coefficient or degree of confidence

• the endpoints of the interval are called the lower and upper confidence limits

Section 40

Single Sample: Estimating the Mean

• Setup:

– n samples
– observed mean x

– known variance σ2

– and the statistic Z = X−µ
σ/

√
n

• then

1 − α = P (−zα/2 ≤ Z ≤ zα/2),

where

zβ = −Φ−1(β)

and

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2dt.

Theorem 36 If x is used as an estimate of µ, we can be 100(1 − α)% confident that the error will
not exceed zα/2

σ√
n

.

• i.e.

XL = X − zα/2
σ√
n

and XU = X + zα/2
σ√
n

.



Standard Error of a Point Estimate One-Sided Confidence Intervals 35

Theorem 37 If x is used as an estimate of µ, we can be 100(1 − α)% confident that the error will
not exceed a specificed amount e when the sample size is

n =
(zα/2σ

e

)2
.

Subsection 40.1

One-Sided Confidence Intervals

• if we want a confidence interval of the form

1 − α = P (Z ≤ zα)

we set

zα = −Φ−1(α).

• then:

XU = X + zα
σ√
n

.

Subsection 40.2

Estimates with Unknown σ

• samples from normal distribution with unknown σ and any n, we use t-distribution

Theorem 38 If x and s are the mean and standard deviation of a random sample from a normal
population with an unknown variance σ2, a 100(1 − α)% confidence interval for µ is

x − tα/2
s√
n

< µ < x + tα/2
s√
n

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of α/2 to
the right.

• one-sided confidence intervals (upper and lower 100(1 − α)% confidence intervals)
for µ with unknown σ are

x + tα
s√
n

and x − tα
s√
n

.

Section 41

Standard Error of a Point Estimate

• given samples X1, . . . , Xn drawn from an unknown distribution with variance σ

• as n → ∞, the distribution of Z = X−µ
σ/

√
n

approaches n(z; 0, 1), the standard normal

• this implies that the standard deviation of Z is around σ
n

Definition 58 The standard error of an estimator is its standard deviation.

• e.g. the standard of error of X is σ/
√

n



Prediction Intervals 36

• recall the 100(1 − α)% confidence intervals for the mean:

x ± zα/2
σ√
n

is written as x ± zα/2s.e.(x)

where "s.e." is the standard error

• the width of confidence intervals depends on the confidence and the standard error

Section 42

Prediction Intervals

• so far we’ve been give samples and X and characterized the error/uncertainty of
X

• we now want to predict the value of a future observation

• suppose we have normal samples X1, . . . , Xn, each with known variance σ and a
sample mean of X

• X is a good point estimate of a single new sample X0

• the error of the point estimate is X0 − X

• due to independence, the variance of the error is σ2 + σ2/n

• we define the statistic

Z = X0 − X

σ
√

1 + 1/n
.

• the distribution of Z is n(z; 0, 1)

• therefore we can write the probability statement

1 − α = P (−zα/2 ≤ Z ≤ zα/2).

Theorem 39 For a normal distribution of measurements with unknown mean µ and known variance
σ2, a 100(1 − α)% prediction interval of a future observation x0 is

x − zα/2σ
√

1 + 1/n < x0 < x + zα/2σ
√

1 + 1/n,

where zα/2 is the z-value leaving an area of α/2 to the right.

Theorem 40 For a normal distribution of measurements with unknown mean µ and unknown vari-
ance σ2, a 100(1 − α)% prediction interval of a future observation x0 is

x − tα/2s
√

1 + 1/n < x0 < x + tα/2s
√

1 + 1/n,

where tα/2 is the t-value with v = n − 1 degrees of freedom, leaving an area of α/2 to
the right.

• outlier detection: if a new observation is outside the prediction interval, we can
declare it an outlier
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Section 43

Tolerance Limits

• we want to define bounds that cover a fixed proportion of the measurements

Definition 59 For a normal distribution of measurements with unknown mean µ and unknown stan-
dard deviation σ, tolerance limits are given by x ± ks, where k is determined such
that one can assert with 100(1 − γ)% confidence that the given limits contain at least
the proportion of 1 − α of the measurements.

• values of k given in a provided table

Subsection 43.1

Comparison of Intervals

• Confidence Intervals:

– setup: independent observations of RVs, x1, . . . , xn, and the mean is x =
1
n

∑n
i=1 xi

– there is a 100(1 − α)% chance the true mean µ is in an interval around x

– use CLT to compute interval when we know σ for each observation or n is
large

– use t-distribution when σ is unknown

• Prediction Intervals:

– same setup
– 100(1 − α)% chance the next observation x0 is in an interval around x

– compute from t or normal distribution

• Tolerance Limits:

– same setup
– 100(1 − γ)% of measurements will be in an interval x ± ks

– compute from table

Section 44

Two Samples: Estimating the Difference between Two
Means

• if we have two populations with means µ1 and µ2 and variances σ2
1 and σ2

2

• then a point estimator of the difference between µ1 and µ2 is given by the statistic
X1 − X2

• therefore to obtain a point estimate of µ1 − µ2, we select independent random
sample from each population of sizes n1 and n2 and compute x1−x2 (the difference
of the sample means)

• the sampling distribution of X1 − X2 is approximately normally distributed with
mean µX1−X2

= µ1 − µ2 and standard deviation σX1−X2
=

√
σ2

1/n1 + σ2
2/n2
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• therefore, we define a standard normal variable

Z = (X1 − X2) − (µ1 − µ2)√
σ2

1/n1 + σ2
2/n2

• and assert that

P (−zα/2 < Z < zα/2) = 1 − α.

Theorem 41 Confidence Interval for µ1 − µ2, Known Variances: If x1 and x2 are means
of independent random samples of sizes n1 and n2 from populations with known
variances σ2

1 and σ2
2 , a 100(1 − α)% confidence interval for µ1 − µ2 is given by

(x1 − x2) − zα/2

√
σ2

1
n1

+ σ2
2

n2
< µ1 − µ2 < (x1 − x2) + zα/2

√
σ2

1
n1

+ σ2
2

n2

where zα/2 is the z-value leaving an area of α/2 to the right.

Subsection 44.1

Two Samples with Unknown Variance

44.1.1 Equal Variances

Definition 60 Pooled Estimate of Variance: the sample size-weighted average of S2
1 and S2

2

S2
p = (n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2 .

• define the statistic

T = (X1 − X2) − (µ1 − µ2)
Sp

√
1/n1 + 1/n2

.

• then T has the t-distribution with v = n1 + n2 − 2 degrees of freedom

• we have

P (−tα/2 < T < tα/2) = 1 − α.

Theorem 42 Confidence Interval for µ1 −µ2, Equal but Unknown Variances: a 100(1−α)%
confidence interval for µ1 − µ2 is given by

(x1 − x2) − tα/2sp

√
1/n1 + 1/n2 < µ1 − µ2 < (x1 − x2) + tα/2sp

√
1/n1 + 1/n2,

where sp is the pooled estimate of the population standard deviation and tα/2 is the
t-value with v = n1 + n2 − 2 degrees of freedom, leaving an area of α/2 to the right.

44.1.2 Different Variances
• if the variances are unknown and different, we use the statistic

T ′ = (X1 − X2) − (µ1 − µ2)√
S2

1/n1 + S2
2/n2

.
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• then T ′ approximately has a t-distribution with

v = (s2
1/n1 + s2

2/n2)2

(s2
1/n1)2/(n1 − 1) + (s2

2/n2)2/(n2 − 1)

degrees of freedom

Section 45

Paired Observations

• previously we considered two sample populations of different sizes and all mea-
surements were independent

• now we consider two sample populations of the same size and pairs of observations
have one measurement from each population

– e.g. measuring before and after observations on n people – each "before"
measurement is paired with an "after" measurement

• consider paired samples (Xi, Yi), i = 1, . . . , n with statistics µX , σX , . . . (same for
Yi’s)

• we are interested in the difference Di = Xi − Yi

• the variance of the difference:

var(Di) = var(Xi − Yi) = σ2
X + σ2

Y − 2cov(Xi, Yi).

• we expect cov(Xi, Yi) ≥ 0, e.g. the before and after weights for one person is likely
both above µX and µY

• pairing helps reduce variance

• we can then apply usual CLT or t-distribution confidence intervals to sample Di

Section 46

Single Sample: Estimating a Proportion

• a point estimator of the proportion p in a binomial experiment is given by the
staistic P̂ = X/n

• X represents the number of successes in n trials

• the sample proportion p̂ = x/n is used as the point estimate of the parameter p

• by CLT, for n sufficiently large, P̂ is approximately normally distributed with
mean p and variance pq

n

• we can use the statistic

Z = P̂ − p√
pq/n

.

Theorem 43 Large Sample Confidence Intervals for p: If p̂ is the proportion of successes in
a random sample of size n and q̂ = 1 − p̂, an approximate 100(1 − α)% confidence
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interval for the binomial parameter p is given by (method 1)

p̂ − zα/2

√
p̂q̂

n
< p < p̂ + zα/2

√
p̂q̂

n

or by the limits (method 2)

p̂ + z2
α/2
2n

1 +
z2

α/2
n

±
zα/2

1 +
z2

α/2
n

√
p̂q̂

n
+

z2
α/2

4n2 .

Theorem 44 If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error will
not exceed zα/2

√
p̂q̂/n.

Subsection 46.1

Choice of Sample Size

• suppose we want to be 100(1 − α)% confident that the error is less than some
specified amount e

Theorem 45 If p̂ is used as an estimate of p, we can be 100(1 − α)% confident that the error will
be less than a specified amount e when the sample size is approximately

n =
z2

α/2p̂q̂

e2 .

• but there’s a catch: p̂ depends on n

• if we want a safe lower bound for n :

Theorem 46 If p̂ is used as an estimate of p, we can be at least 100(1 − α)% confident that the
error will not exceed a specified amount e when the sample size is

n =
z2

α/2

4e2 .

Section 47

Single Sample: Estimating the Variance

• an interval estimate of σ2 can be established using the statistic

X2 = (n − 1)S2

σ2 .

Theorem 47 Confidence Interval for σ2: If s2 is the variance of a random sample of size n from
a normal population, a 100(1 − α)% confidence interval for σ2 is

(n − 1)s2

χ2
α/2

< σ2 <
(n − 1)s2

χ2
1−α/2

,

where χ2
α/2 and χ2

1−α/2 are χ2-values with v = n − 1 degrees of freedom, leaving areas
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of α/2 and 1 − α/2 to the right.

Section 48

Maximum Likelihood Estimation

• so far, we’ve used intuitive sampling statistics:

– X for µ, S2 for σ2, P̂ for p

• but sometimes it is not obvious what the proper estimator for parameters should
be

– e.g. degrees of freedom, α and β in gamma distribution, etc.

• one of the most important approaches to estimation in statistical inference: method
of maximum likelihood

Subsection 48.1

The Likelihood Function

• the method of maximum likelihood is that for which the likelihood function is
maximized

• main philosophy: the reasonable estimator of a parameter based on sample infor-
mation is the parameter value that produces the largest probability of obtaining
the sample – given a sample, what was the parameter value that most likely pro-
duced it

• the likelihood of a sample for a certain value of a parameter is simply the joint
distribution of the random variables for a certain value of that parameter, i.e.

P (X1 = x1, . . . , Xn = xn|θ) = f(x1, θ) . . . f(xn, θ).

Definition 61 Given independent observations x1, x2, . . . , xn from a probability density function
(continuous case) or probability mass function (discrete case) f(x; θ), the maximum
likelihood estimator (MLE) θ̂ is that which maximizes the likelihood function

L(x1, x2, . . . , xn; θ) =
n∏

i=1
f(xi, θ) = f(x1, θ)f(x2, θ) . . . f(xn, θ),

i.e.

θ̂ = max
θ

L(x1, . . . , xn; θ).

• it is often convenient to work with the natural log of the likelihood function in
finding its maximum

• for example, given an RV X with a gamma distribution and a sample x1, . . . , xn,
how can we estimate α and β?

• using MLE:

α̂ = max
α

n∏
i=1

f(xi; α, β),
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and same applies to β
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XHypothesis Testing
Section 49

Statiscal Hypotheses: General Concepts

Definition 62 Statistical Hypothesis: an assertion or conjecture concerning one or more popula-
tions (a special case of more general hypotheses)

• rejection of a hypothesis implies that the sample evidence refutes it – there is a
extremely small probability of obtaining the sample information observed if the
hypothesis was true (therefore it isn’t)

• typically, a contention is reached via a rejection of an opposing hypothesis

Subsection 49.1

The Null and Alternative Hypotheses

• null hypothesis: any hypothesis we wish to test, denoted by H0

• the rejection of H0 leads to the acceptance of the alternative hypothesis, de-
noted by H1

• the alternative hypothesis H1 usually represents the question to be answered or
the theory to be tested (its specification is crucial)

• the null hypothesis nullifies or opposes the alternative hypothesis (they are often
logical complements)

• a data analyst arrives at one of two conclusions:

1. reject H0 in favour of H1 because of sufficient evidence in the data, or

2. fail to reject H0 because of insufficient evidence in the data

• for example: innocent until proven guilty:

– H0 is innocent, H1 is guilty

– if there is strong enough evidence pointing to guilty, we reject H0 in favour
of H1

– if evidence is weak, we fail to reject H0

– key point: we are not proving innocence, we are failing to reject innocence

• hypothesis testing is using confidence intervals and logic to draw these conclu-
sions

43
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Section 50

Testing a Statistical Hypothesis

Definition 63 Type I error: rejection of the null hypothesis when it’s actually true (false positive)

• level of significance: probability of committing a type I error

α = P (type I error).

Definition 64 Type II error: nonrejection of the null hypothesis when it’s actually false (false
negative)

• level of significance: probability of committing a type II error

β = P (type II error).

• the probability of committing both types of error can be reduced by increasing the
sample size

Example: mean weight of male students in a college

• our null and alternative hypotheses: H0 is µ = 68 kg, H1 is µ ̸= 68 kg

• we encounter a first issue: P (H0) = P (µ = 68) = 0

– then H0 will almost always be rejected

• to solve this we use a critical region – a range leading to rejection of H0:

– if 67 < x < 69, don’t reject H0

– critical region is the complement of [67, 69]

Figure 12. Critical region shown in blue.

• we now calculate the probabilties of committing type I and type II errors

• assume sample size of n = 36

• we assume that standard deviation of the population of weights is σ = 3.6

– for larger samples, we may substitute s for σ if no other estimate of σ is
available

• our decision statistic will be X, the most efficient estimator of µ

• from the CLT, we know the sampling distribution of X is approximately normal
with standard deviation σX = σ/

√
n = 3.6/6 = 0.6
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Figure 13. Probability of a type I error.

• the probability of committing a type I error is given by

α = P (X < 67) + P (X > 69) when µ = 68.

• converting to z-values and looking at tables for normal distribution, we find that
α = 0.0950

• interpretation: 9.5% of all samples of size 36 would lead us to reject µ = 68 kg
when in fact it is true

• to reduce α, we can increase sample size or widen the fail-to-reject region

– if we increase sample size to 64, then repeating the calculations, we obtain
α = 0.0264

• but reduction in α is not sufficient by itself to guarantee good testing procedure,
we must also evaluate β for various alternative hypotheses

• if it’s important to reject H0 when the true mean is some value µ ≥ 70 or µ ≤
66, then the probability of committing a type II error should be calculated for
alternatives µ = 66 and µ = 70

– due to symmetry, it’s only necessary to consider one case

• a type II error occurs when 67 < x < 69 when H1 is true:

β = P (67 ≤ X ≤ 69 when µ = 70).

• by calculating z-values and looking at tables, we obtain β = 0.0132 (same result
if the true value of µ was 66)

• again, the value of β can be decreased if sample size n is increased

• the probability of committing a type II error increases rapidly when the true value
of µ approaches (but is not equal to) the hypothesized value

– for example, if the alternative hypothesis µ = 68.5 is true:
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Figure 14. Probability of type II error for testing µ = 68 versus µ = 70.

Figure 15. Probability of type II error for testing µ = 68 vs µ = 68.5

Theorem 48 Important Properties of a Hypothesis Test:

1. type I and type II error are related (decrease in probability of one generally
results in an increase in the probability of the other)

2. size of the critical region (and therefore the probability of committing a type I
error) can always be reduced by adjusting the critical values

3. increase in sample size will reduce α and β

4. if the null hypothesis H0 is false, β is maximized when the true value of a
parameter approaches the hypothesized value (the greater the distance between
the true and hypothesized value, the smaller it will be)

Definition 65 Power of a test: the probability of rejecting H0 given that a specific alternative is
true.

• computed as 1 − β

Subsection 50.1

One- and Two-Tailed Tests
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• one-tailed test: a test of a statistical hypothesis where the alternative is one
sided

– for example:

H0 : θ = θ0

H1 : θ > θ0.

• two-tailed test: a test of a statistical hypothesis where the alternative is two
sided

– for example:

H0 : θ = θ0

H1 : θ ̸= θ0.

Section 51

P-Values

• so far, we are either in or out of a predetermined critical region

• but it is also important to know the probability of an outcome occurring, or some-
thing else that is equal or even rarer, given that H0 is true

• it gives the analyst an alternative (in terms of a probability) to a mere ’reject’ or
’do not reject’ conclusion

Definition 66 P-value: the probability of generating the observed data or something else that is
equal or rarer, given that H0 is true

• tells us the probability of a test statistic being as extreme or more extreme than
the measured value

• textbook definition: the lowest level (of significance) at which the observed value
of the test statistic is significant

Subsection 51.1

P-Values vs Classic Hypothesis Testing

• there are differences in approach and philosophy of these two methods

• when using P -values, there is no fixed α determined and conclusions are drawn
on the basis of the size of the P -value together with subjective judgement of the
analyst

• their approaches are summarized below

Theorem 49 Approach to Hypothesis Testing with Fixed Probability of Type I Error:

1. State null and alternative hypotheses

2. choose a fixed significance level α

3. Choose an appropriate test statistic and establish the critical region based on α
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4. Reject H0 if the computed test statistic is in the critical region, otherwise don’t
reject

5. Draw conclusions

Theorem 50 Significance Testing (P-value) Approach:

1. state null and alternative hypotheses

2. Choose an appropriate test statistic

3. Compute P -value based on the computed value of the test statistic

4. Use jedgement based on the P -value and knowledge of the scientific system

Example:

• hypothesis: H0 is µ = 5, H1 is µ ̸= 5

• Sample data:

– n = 40 samples
– x = 5.5
– s ≈ σ = 1

• using classic hypothesis testing

– use a fixed probability of a type I error α = 0.05, then zα/2 = 1.96
– compute

z = x − µ0

σ/
√

n
= 3.16.

– since this is outside of [-1.96, 1.96], we reject H0

• using P-value approach

– the P -value is the probability of something equally or more rare occurring:

P = 2P (Z > 3.16) = 0.0016.

– so H0 is very unlikely

Section 52

Goodness-of-Fit Test

• so far we have only looked at testing statistical hypotheses about single population
parameters such as µ and σ2

• now we consider a test to determine if a population has a specified theoretical
distribution

• the test is based on how good a fit there is between the frequency of occurrence of
observations in a sample and the expected frequencies obtained from the hypoth-
esized distributions
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Definition 67 Goodness-of-Fit Test:

• setup:

– discrete RV with possible outcomes i = 1, . . . , k

– n trials
– ei = nP (i) is the expected frequency of outcome i = 1, . . . , k

– oi is the observed frequency of i (Oi is the RV)

Let

χ2 =
k∑

i=1

(oi − ei)2

ei
.

• distribution of χ2 is approximated very closely by the chi-squared distribution
with v = k − 1 degrees of freedom

• small χ2 indicates a good fit (large is bad fit)

• number of degrees of freedom is equal to k − 1 since there are only k − 1 freely
determined frequencies (the last frequency is determined by the others)

• since large values of χ2 indicates a poor fit which leads to rejection of H0, the
critical region will fall in the right tail of the chi-squared distribution

• for a level of significance of α, we find the critical value χ2
α from textbook Table

A.5, then χ2 > χ2
α is the critical region

• note: this decision criterion shouldn’t be used unless each of the expected frequen-
cies is ≥ 5
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XILinear Regression and Corre-
lation
Section 53

Function Approximation

• Basic setup:

– input/output pairs: (xi, yi), i = 1, . . . , n

– we want a function y = f(x) that minimizes errors ei = yi − f(xi)

• types of function approximators:

– linear: y = ax + b

– nonlinear (kernel regression, splines, neural networks)
– classification

∗ x ∈ R, y ∈ 0, 1
∗ support vector machine

Section 54

Linear Regression with Least Squares

• we want to fit a linear function y = ax + b to the data

• the errors are ei = yi − axi − b, i = 1, . . . , n

• the total sqaured error is given by

E =
n∑

i=1
e2

i =
n∑

i=1
(yi − axi − b)2.

• we want to minimize total squared error, so we solve for a and b that minimize E :

– we differentiate with respect to a and b and set equal to 0:

dE
da

=
n∑

i=1

d

da
(yi − axi − b)2 = 0

dE
db

=
n∑

i=1

d

db
(yi − axi − b)2 = 0.

• rearranging these equations, we get the ’normal equations’ which can be solved to
yield computing formulas for a and b:

50
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Theorem 51 Estimating the Regression Coefficients: Given the sample (xi, yi); i = 1, . . . , n,
the least squares estimates of the regression coefficients a and b are computed from
the formulas

a =
n

∑n
i=1 xiyi − (

∑n
i=1 xi) (

∑n
i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

b =
∑n

i=1 yi − a
∑n

i=1 xi

n
= y − ax.

Interpretation:

• the errors are the vertical deviations from the line to each data point

Figure 16. Errors/residuals as vertical deviations.

• Deming regression uses geometric distance – better for independent errors in xi

and yi

• for linear regression we don’t need to know σ, but for Deming we need to know
the ratio of variances of x and y errors

Example with Maximum Likelihood:

• recall MLE

• in this case, each error ei is a realization of a normal RV Ei with µ = 0 and
variance σ2

– this implies that each yi is also an RV with a mean of axi − b and variance
σ2

• parameters: θ = (a, b)

• likelihood function:

L(e1, . . . , en; a, b) =
n∏

i=1

1√
2πσ

ee2
i /2σ2

.

• maximizing this function over (a, b) gives the least squares solution
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Section 55

Properties of the Least Squares Estimators

Conclusion:

• if we assume yi = axi + b + ei

• ei is a realization of the normal RV Ei with µ = 0 and variance σ2

• yi is also a realization of RV Yi and is a function of Ei

• then a and b are realizations of RVs A and B

• we see that A and B are unbiased estimators of the true coefficients α and
β

Subsection 55.1

Estimating the Error

• if yi = axi + b + ei and ei is a realization of an RV Ei with variance σ2, then
σ2 reflects random variation or experimental error variation around the regression
line

• the total squared error is
n∑

i=1
e2

i .

• we define the statistic

S2 =
∑n

i=1 E2
i

n − 2 .

• this is an unbiased estimator of σ2

• if we denote the regression estimate as ŷi = axi + b then ei = yi − ŷi

• we can write a realization of this as the following:

Theorem 52 An unbiased estimate of σ2 is

s2 =
n∑

i=1

(yi − ŷi)2

n − 2

=
∑n

i=1(yi − y)2 − α
∑n

i=1(xi − x)(yi − y)
n − 2 .
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