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PART

IElectrostatics
In electrostatics, charges are at rest and electric fields are constant over time. There are
three ways of finding an electric field E⃗:

1. Coulomb’s Law

2. Gauss’ Law

3. Potential

Section 1

Introduction

Subsection 1.1

Charge

• a fundamental property of matter – due to excess (-ve charge) or deficit (+ve) of
electrons 1 1 Charge of an electron: e =

−1.6 · 10−19C

• charge is conserved (cannot be created/destroyed)

• symbol: q or Q

Subsection 1.2

Current

Definition 1 Current: rate of charge flow across a finite area.

I = dq

dt
(1.1)

• units:
[

C
S

]
= [A] (Amperes)

Section 2

Coulomb’s Law

Theorem 1 Coulomb’s Law: The force between two point charges is equal to:

#     »F12 = k
q1q2

R2
12

#       »aR12 (2.1)

where #     »F12 is the force exerted by q1 on q2, and

k = 1
4πϵ0

= 1
4π(8.85 · 10−12) ≈ 9 · 109Nm2/C2 (2.2)

• ϵ0 is the permittivity of vacuum

1



Coulomb’s Law 2

Definition 2 Electric Field Intensity: field of force per unit +ve charge (units: N/C).

#»E =
#»F
q

(2.3)

=⇒ #»F = q
#»E (2.4)

• Direction of electric field is the same as the force direction exprienced by the
test charge

• Electric field is independent of the test charge

• Field can exist in vacuum

2.0.1 Electric field due to a point charge

• if the point source charge is at the origin:

#»E =
#»F

qtest
= 1

4πϵ0

qsrc���qtest

R2���qtest

#  »aR (2.5)

#»E = 1
4πϵ0

qsrc

R2
#  »aR (2.6)

• if the point source charge is NOT at the origin: 2 2 we will use prime notation to
represent a source

#»E = 1
4πϵ0

q

| #»R −
# »

R′|2
#    »aqp (2.7)

#»E = 1
4πϵ0

q

| #»R −
# »

R′|3
( #»R −

# »

R′) (2.8)

2.0.2 Electric field due to system of discrete charges

• use vector superposition:

#»E = 1
4πϵ0

∑
k

qk

| #»R −
#   »

R′
k|3

( #»R −
#   »

R′
k) (2.9)

2.0.3 Electric field due to continuous distribution of charge

• recall: the electric field due to discrete charges is simply equal to the sum of the
effects from each charge

• in a continuous distribution, we take the integral over the distribution, summing
up the contribution from each tiny element of charge:

#»E =
�

distribution

d
#»E (2.10)

• a differential amount of charge can be represented as dQ = ρV dV ′ in a volume,
dQ = ρSdS′ on a surface, or dQ = ρldl′ along a line



Gauss’s Law 3

• For a volume charge:

#»E =
�

V ′
d

#»E =
�

V ′

1
4πϵ0

ρV dV ′

| #»R −
# »

R′|2
#            »aR−R′ (2.11)

#»E = 1
4πϵ0

�
V ′

ρV

| #»R −
# »

R′|3
( #»R −

# »

R′)dV ′ (2.12)

• Similarly, for a surface charge:

#»E = 1
4πϵ0

�
S′

ρS

| #»R −
# »

R′|3
( #»R −

# »

R′)dS′ (2.13)

• and for a line charge:

#»E = 1
4πϵ0

�
l′

ρS

| #»R −
# »

R′|3
( #»R −

# »

R′)dl′ (2.14)

2.0.4 STEPS FOR SOLVING CHARGE DISTRIBUTION PROBLEMS
1. Choose appropriate coordinate system (depends on symmetry of charge distribu-

tion)

2. Find expression for differential charge element, dQ

3. Find expression for #»R −
# »

R′

4. Write out the integral expression for d
#»E

5. Integrate the expression (pay attention to changing unit vectors in cylindrical and
spherical coordinates)

Section 3

Gauss’s Law

Subsection 3.1

Integral form

Some quick notes on field lines and flux:

• direction of an electric field is tangential to the field lines

• magnitude of an electric field is proportional to the line density

• the electric flux through a surface:

Φ =
�

S

#»E · d
#»S (3.1)

Theorem 2 Gauss’s Law (integral form): the total electric flux out of a surface is equal to the
total charge enclosed by the surface divided by the permittivity of vacuum.

�
S

#»E · d
#»S = Qenclosed

ϵ0
(3.2)



Gauss’s Law Differential form 4

•
�

S

#»E · d
#»S > 0 =⇒ net flux out =⇒ +ve charge enclosed

•
�

S

#»E · d
#»S < 0 =⇒ net flux in =⇒ -ve charge enclosed

• units for flux: [Vm]

• to solve for the electric field intensity, evaluate the integral in Gauss’s Law and
isolate for #»E

• Electric field due to a +ve:

– point charge (∝ 1
R2 ):

#»E = Q

4πϵ0R2
#  »aR (3.3)

– infinitely long line charge (∝ 1
R ):

#»E = ρl

2πϵ0R
#  »aR (3.4)

– infinite plane charge (constant):

#»E = ρS

2ϵ0
(3.5)

Subsection 3.2

Differential form

Some quick notes on divergence:

Definition 3 Divergence: the divergence of a vector field #»A can be thought of as its net outward
flux per unit volume as volume approaches 0, i.e. its net outward flux at a point.

#»∇ · #»A ≡ lim
∆V →0

�
S

#»A · d
#»S

∆V
(3.6)

Theorem 3 Divergence Theorem: integrating the divergence over a volume gives the net out-
ward flux over the surface area enclosing the volume.

�
V

#»∇ · #»AdV =
�

S

#»A · d
#»S (3.7)

• Substituting in electric field #»E for #»A, we obtain
�

V

#»∇ · #»EdV =
�

S

#»E · d
#»S (3.8)

• but we notice that the right side appears in the integral form of Gauss’s Law, so
�

V

#»∇ · #»EdV = Q

ϵ0
. (3.9)



Electric Potential 5

• Noticing that we can write Q as a volume integral of charge density, we get:
�

V

#»∇ · #»EdV =
�

V
ρV dV

ϵ0
(3.10)

• and therefore...

Theorem 4 Gauss’s Law (differential form):

#»∇ · #»E = ρV

ϵ0
(3.11)

• left side can be thought of as the net outward electric flux at a point

A summary of Gauss’s Law:

Theorem 5 Gauss’s Law: for a given volume and its enclosing surface, Gauss’s Law relates the
enclosed charge to the electric field it produces.

�
S

#»E · d
#»S = Qenclosed

ϵ0
(3.12)

#»∇ · #»E = ρV

ϵ0
(3.13)

Section 4

Electric Potential

Definition 4 Electric Potential: The amount of work needed to move a unit of electric charge
from a reference point to a specific point in an electric field.

∆VAB = VB − VA = ∆UAB

q
= −

� B

A

E⃗ · d⃗l.

Some notes on potential:

1. Potential is relative (t a reference potential where Vref = 0)

2. Potential is associated with the field, not the test charge (it is independent of the
test charge)

3. Units in Volts (V)

4. Analogy: charge going against an E⃗ field is like a person moving up a hill

• Potential can be thought of as altitude – equipotential lines can be thought
of as lines of equal altitude

• Electric field lines are perpendicular to equipotential lines – they are the
fastest way to change altitude

5. Differential form:

Definition 5 Differential form of Electric Potential:

E⃗ = −∇⃗V.
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• proves that electric fields are conservative

• Electric potential (reference taken at ∞) for discrete cases:

V (R) = 1
4πϵ0

∑
k

qk

|R⃗ − R⃗′
k|

.

• Electric potential (reference taken at ∞) for continuous cases:

V (R) = 1
4πϵ0

�
V ′

ρV ′

R
dV ′

V (R) = 1
4πϵ0

�
S′

ρS′

R
dS′

V (R) = 1
4πϵ0

�
l′

ρl′

R
dl′.

– where R is the distance from the source charge to a point of interest

Section 5

Perfect Conductors

• conductors have free charges

• Inside a perfect conductor:

ρV = 0

E⃗ = 0
=⇒ V = constant.

• Boundary conditions at a perfect conductor/free space interface:

Et = 0

En = ρs

ϵ0
.

– electric field is always perpendicular to the boundary of a perfect conductor

Section 6

Dielectrics

• in dielectrics, charges are bound – dielectrics can be polarized

• applying a static electric field to a dielectric material can induce a dipole, creating
a dipole moments

– the dipole moment of two equal and opposite charges is defined as p⃗ = qd⃗,
where q is the magnitude of the charges and d⃗ is the distance between the
two charges

• some materials are made of molecules that have non-zero dipole moments (e.g.
water)

• some materials can exhibit permanent electric dipole moment in the absence of an
external electric field – called "electrics"
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Subsection 6.1

Polarization Vector

Definition 6 Polarization Vector: the volume density of electric dipole moment

P⃗ = lim
∆V →0

∑n∆V
k=1 p⃗k

∆V
.

• n is number of particles per unit volume so n∆V is total number of particles

• units: [C/m2]

• the charge density of a dielectric is given by the following formulas:

Theorem 6 Charge density of a dielectric (referred to as polarization charge densities or
bound charge densities):

• for surface charge density:

ρP S = P⃗ · a⃗n.

• for volume charge density:

ρP V = −∇⃗ · P⃗ .

• a polarized dielectric can be replaced by an equivalent polarization surface charge
density ρP S and polarization volume charge density ρP V for calculations:

V = 1
4πϵ0

�
S′

ρP S

|R⃗ − R⃗′|
dS′ + 1

4πϵ

�
V ′

ρP V

|R⃗ − R⃗′|
dV ′.

Section 7

Electric Flux Density and Dielectric Constant

Definition 7 Electric Flux Density (or electric displacement):

D⃗ = ϵ0E⃗ + P⃗ .

Theorem 7 Generalized Gauss’ Law:

∇⃗ · D⃗ = ρ�
S

D⃗ · dS⃗ = Qencl.

• for linear isotropic materials (where P⃗ and E⃗ are proportional – point in same
direction):

P⃗ = ϵ0χeE⃗.

– where χe = ϵr − 1 is the electrical susceptibility (unitless)
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• then we get

D⃗ = ϵ0(1 + χe)E⃗ = ϵ0ϵrE⃗ = ϵE⃗.

– where ϵr = 1+χe = ϵ
ϵ0

is the relative permittivity or dielectric constant
of the medium (dimensionless quantity)

– where ϵ is the absolute permittivity of the medium

Section 8

Boundary Conditions for Electrostatic Fields

• we already know the boundary conditions between conductor/free space interfaces

• we now determine the boundary conditions at the interface between two generic
dielectric media:

Et1 = Et2

(D⃗1 − D⃗2) · a⃗n2 = ρS .

Section 9

Capacitors

• capacitor: device consisting of two isolated conductors for storing electrostatic
potential energy

• a charged capacitor has equal but opposite charge on the two conductors

– the charge of a capacitor refers to the charge on one conductor

• the amount of energy stored is the energy it takes to charge a capacitor from a
discharged state

Subsection 9.1

Capacitance

Definition 8 Capacitance:

C = Q

V
.

• Q is charge of the capacitor

• V is the difference in potential between the two conductors

• units: [C/V] = [F] (Farads)

• Capacitance is independent of Q and V – it’s only dependent on the physical
attributes of the capacitor

– dimension, shape, dielectric material



9.1.1 Calculating Capacitance
1. Choose coordinate system

2. Assume +Q/−Q on conductors

3. Find electric field from Q distribution

4. Find VAB = −
� B

A
E⃗ · d⃗l where A carries −Q and B carries +Q

5. C = Q
V

• for a parallel plate capacitor:

C = Sϵ

d
.

– where S is plate area, d is distance between plates, ϵ is dielectric permittivity

Subsection 9.2

Inhomogeneous Capacitors (Series and Parallel Connections)

• capacitors in series:

C =
(

1
C1

+ 1
C2

+ . . .

)−1

1
C

= 1
C1

+ 1
C2

+ . . . .

• capacitors in parallel:

C = C1 + C2 + . . . .

PART

IISolution of Electrostatic Prob-
lems

• previously we’ve been given the charge distribution everywhere to find D⃗, E⃗, V ,
etc.

• in more practical problems, we do not know the charge distribution everywhere

Section 10

Poisson’s Equation

Theorem 8 Poisson’s Equation:

∇2V = −ρ

ϵ
.

• in the case that ρ = 0, this equation becomes Laplace’s Equation:

9



∇2V = 0.

Section 11

Uniqueness of Electrostatic Solutions

Theorem 9 Uniqueness Theorem: there is only one solution to Poisson’s equation (and
Laplace’s equation) for a given set of sources and boundary conditions.

Section 12

Method of Images

• method of images is a technique for solving electrostatics problems in the presence
of perfect conductors without solving Poisson’s or Laplace’s equations

• image theory states that a given charge configuration above an infinite grounded
perfect conducting plane may be replaced by the charge configuration itself, its
image, and an equipotential surface in place of the conducting plane

• image method: 2 conditions must always be satisfied:

1. image charges must be located in the conducting region
2. image charges must be located such that on the conducting surface the po-

tential is zero or constant
– this is equivalent to the boundary condition that says the tangential

component of the electric field vanishes on the surface of a PEC

PART

IIISteady Electric Currents
Section 13

Current Density and Ohm’s Law

• conduction current: in conductors and semiconductors due to motion of electrons
and holes

• average drift velocity is defined as:

u⃗ = −ueE⃗.

where ue is electron mobility [m2/sV ]

• current: amount of charge through S per unit time

Definition 9 Current Density: a vector whose magnitude is the electric current per cross-
sectional area at a given point in space, direction is the motion of positive charges at

10



Power Dissipation and Joule’s Law 11

that point (direction is same as u⃗e)

J⃗ = ρeu⃗e = −ρeueE⃗.

• notice that J⃗ is proportional to E⃗

• integrating J⃗ over an area give s you the current flowing through that area:

I =
�

S

J⃗ · dS⃗.

Theorem 10 Ohm’s Law:

J⃗ = σE⃗.

• σ is known as the conductivity

Section 14

Power Dissipation and Joule’s Law

Theorem 11 Joule’s Law: the total power dissipated over a volume V is

P =
�

V

E⃗ · J⃗dV.

• notice that

P =
�

V

E⃗ · J⃗dV =
�

l

E⃗ · d⃗l

�
S

J⃗ · dS⃗ = V I.

Subsection 14.1

Resistance

• recall J⃗ = σE⃗

Definition 10 Resistance:

R ≡ V

I
=

�
l
E⃗ · d⃗l�

S
J⃗ · dS⃗

=
�

l
E⃗ · d⃗l�

S
σE⃗ · dS⃗

.

• regardless of how resistance is defined, it is independent of V and I

• R is dependent on the physical attributes of the resistor

Steps to calculate resistance
1. choose coordinate system

2. assume V0 = potential drop between terminals

3. Find E⃗ from V

4. Find I =
�

S
J⃗ · dS⃗ =

�
S

σE⃗ · dS⃗

5. R = V0/I



Section 15

Continuity Equation (Kirchoff’s Current Law)

Theorem 12 Continuity Equation: the divergence of the current density is equal to the change
in charge density:

∇⃗ · J⃗ = −dρ

dt
.

• at steady state:

dρ

dt
= 0 =⇒ ∇⃗ · J⃗ = 0 =⇒

�
S

J⃗ · dS⃗ = 0.

• this gives us Kirchoff’s current law:∑
j

Ij = 0 at steady state.

Section 16

Boundary Conditions for Current Density

• at steady state, we have that

∇⃗ · J⃗ = 0 and ∇⃗ ×

(
J⃗

σ

)
= 0.

– second one is because curl of E⃗ is 0

• this gives us the following boundary conditions for current density:

– normal component of J⃗ is continuous across the boundary (from ∇⃗ · J⃗ = 0):

J1n = J2n.

– tangential components have the same ratio as the conductivities of the two
materials:

J2t

J1t
= σ2

σ1
.

PART

IVStatic Magnetic Fields
Section 17

Introduction

• the force exerted on a moving charge q by a magnetic field B⃗ is

F⃗m = qu⃗ × B⃗.

12



Magnetic Vector Potential 13

• so the total electromagnetic force on a charge is given by

F⃗ = qE⃗ + qu⃗ × B⃗.

Section 18

Fundamental Postulates of Magnetostatics in Free Space

Theorem 13 Fundamental Postulates of Magnetostatics in free space:

• in differential form:

∇⃗ · B⃗ = 0 (no monopoles)

∇⃗ × B⃗ = µ0J⃗ (Amperes Law).

where µ0 is the permeability of free space (constant)

• in integral form:
�

S

B⃗ · dS⃗ = 0
�

C

B⃗ · d⃗l = µ0I.

• the first postulate tells us that there are no magnetic flow sources (unlike electric
fields) – all magnetic flux lines always close upon themselves

– also known as the law of conservation of magnetic flux because it states taht
the total outward magnetic flux through any closed surface is 0

• second postulate is a form of Ampere’s Law and tells us that the circulation of the
magnetic flux density in free space around any closed path is proportional to the
total current flowing through the surface bounded by the path

Section 19

Magnetic Vector Potential

• B⃗ can be expressed as the curl of another vector field, say A⃗:

Definition 11 Magnetic Vector Potential A⃗ is defined such that

B⃗ = ∇⃗ × A⃗.

• since A⃗ is just a mathematical construct, we’re free to choose

∇⃗ · A⃗ = 0.

• then we have the Vector Poisson’s equation:

∇2A⃗ = −µ0J⃗ .
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• solving this equation, we obtain an alternate form for A⃗:

A⃗(R⃗) = µ0

4π

�
v′

J⃗(R⃗′)
|R⃗ − R⃗′|

dv′.

Section 20

Biot-Savart Law

• in many applications we want to determine the magnetic field due to a current-
carrying circuit (currents confined in wires)

• for a thin wire, we have that

J⃗dv′ = J⃗Sdl′ = Idl⃗′.

• and so the previous expression we had for A⃗ becomes

A⃗(R⃗) = µ0I

4π

�
C′

dl⃗′

|R⃗ − R⃗′|
.

• plugging this into B⃗ = ∇⃗ × A⃗ gives us the Biot-Savart Law

Theorem 14 Biot-Savart Law: formula for determining B⃗ caused by a current I in a closed path
C ′

B⃗ = µ0I

4π

�
C′

dl⃗′ × (R⃗ − R⃗′)
|R⃗ − R⃗′|3

.

• can think of it as

B⃗ =
�

C′
dB⃗.

where dB⃗ is the contribution to B⃗ from current element Idl⃗′, given by:

dB⃗ = µ0Idl⃗′

4π
× (R⃗ − R⃗′)

|R⃗ − R⃗′|3
.

• a magnetic dipole is a small current loop

• for a magnetic dipole of radius b carrying current I:

B⃗ = µ0Ib2

4R3 (2 cos θa⃗R + sin θa⃗θ).

– notice the similarity to the electric dipole

Section 21

Magnetization and Equivalent Current Densities

• recall that a magnetic dipole is a small current loop
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Definition 12 Magnetic Dipole Moment:

m⃗ = Iπb2a⃗z.

• direction is defined by current direction and the right hand rule

• we can think of atoms as microscopic magnetic dipoles (orbiting electrons and
electron spin produce magnetic dipole moment)

• if we apply an external magnetic fields, it aligns all microscopic dipoles (since it
exerts a torque)

• this is called magnetization

Definition 13 Magnetization Vector: volume density of magnetic dipole moment

M⃗ = lim
∆V →0

∑n∆V
k=1 m⃗k

∆V
.

• we can write the magnetic vector potential A⃗ as

A⃗ = µ0

4π

�
v′

∇⃗′ × M⃗

|R⃗ − R⃗′|
dv′ + µ0

4π

�
S′

M⃗ × a⃗′
n

|R⃗ − R⃗′|
dS′.

– the first term is the contribution to A⃗ from a volume current density
– second term is contribution from surface current density

• then the equivalent magnetization current densities are given by:

J⃗m = ∇⃗′ × M⃗

J⃗ms = M⃗ × a⃗n.

Section 22

Magnetic Field Intensity and Relative Permeability

Section 23

Amperes Law
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